
Python productivity for Zynq (Pynq)
Documentation

Release 2.0

Xilinx

Feb 21, 2018

Contents

1 Project Goals 3

2 Summary 5
2.1 Getting Started . 5
2.2 Jupyter Notebooks . 13
2.3 Python Environment . 24
2.4 PYNQ Overlays . 29
2.5 PYNQ Libraries . 41
2.6 Overlay Design Methodology . 79
2.7 PYNQ SD Card . 114
2.8 pynq Package . 116
2.9 Verification . 209
2.10 Frequently Asked Questions (FAQs) . 213
2.11 Glossary . 217
2.12 Useful Links . 219
2.13 Appendix . 220
2.14 Change Log . 225

Python Module Index 231

i

ii

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Xilinx® makes Zynq® devices, a class of All Programmable Systems on Chip (APSoC) which integrates a multi-core
processor (Dual-core ARM® Cortex®-A9) and a Field Programmable Gate Array (FPGA) into a single integrated
circuit. FPGA, or programmable logic, and microprocessors are complementary technologies for embedded systems.
Each meets distinct requirements for embedded systems that the other cannot perform as well.

Contents 1

Python productivity for Zynq (Pynq) Documentation, Release 2.0

2 Contents

CHAPTER 1

Project Goals

The main goal of PYNQ, Python Productivity for Zynq, is to make it easier for designers of embedded systems to
exploit the unique benefits of APSoCs in their applications. Specifically, PYNQ enables architects, engineers and
programmers who design embedded systems to use Zynq APSoCs, without having to use ASIC-style design tools to
design programmable logic circuits.

PYNQ achieves this goal in three ways:

• Programmable logic circuits are presented as hardware libraries called overlays. These overlays are analogous
to software libraries. A software engineer can select the overlay that best matches their application. The overlay
can be accessed through an application programming interface (API). Creating a new overlay still requires
engineers with expertise in designing programmable logic circuits. The key difference however, is the build
once, re-use many times paradigm. Overlays, like software libraries, are designed to be configurable and re-used
as often as possible in many different applications.

Note: This is a familiar approach that borrows from best-practice in the software community. Every day, the Linux
kernel is used by hundreds of thousands of embedded designers. The kernel is developed and maintained by fewer
than one thousand, high-skilled, software architects and engineers. The extensive re-use of the work of a relatively
small number of very talented engineers enables many more software engineers to work at higher levels of abstraction.
Hardware libraries or overlays are inspired by the success of the Linux kernel model in abstracting so many of the
details of low-level, hardware-dependent software.

• PYNQ uses Python for programming both the embedded processors and the overlays. Python is a “productivity-
level” language. To date, C or C++ are the most common, embedded programming languages. In contrast,
Python raises the level of programming abstraction and programmer productivity. These are not mutually-
exclusive choices, however. PYNQ uses CPython which is written in C, and integrates thousands of C libraries
and can be extended with optimized code written in C. Wherever practical, the more productive Python environ-
ment should be used, and whenever efficiency dictates, lower-level C code can be used.

• PYNQ is an open-source project that aims to work on any computing platform and operating system. This goal
is achieved by adopting a web-based architecture, which is also browser agnostic. We incorporate the open-
source Jupyter notebook infrastructure to run an Interactive Python (IPython) kernel and a web server directly
on the ARM Cortex A9 of the Zynq device. The web server brokers access to the kernel via a suite of browser-

3

Python productivity for Zynq (Pynq) Documentation, Release 2.0

based tools that provide a dashboard, bash terminal, code editors and Jupyter notebooks. The browser tools are
implemented with a combination of JavaScript, HTML and CSS and run on any modern browser.

4 Chapter 1. Project Goals

CHAPTER 2

Summary

PYNQ is the first project to combine the following elements to simplify and improve APSoC design:

1. A high-level productivity language (Python in this case)

2. FPGA overlays with extensive APIs exposed as Python libraries

3. A web-based architecture served from the embedded processors, and

4. The Jupyter Notebook framework deployed in an embedded context

2.1 Getting Started

This guide will show you how to setup your computer and PYNQ-Z1 board to get started using PYNQ. Any issues
can be posted to the PYNQ support forum.

2.1.1 PYNQ-Z1 Setup Guide

Prerequisites

• PYNQ-Z1 board

• Computer with compatible browser (Supported Browsers)

• Ethernet cable

• Micro USB cable

• Micro-SD card with preloaded image, or blank card (Minimum 8GB recommended)

Getting Started Video

You can watch the getting started video guide, or follow the instructions in Board Setup.

5

https://groups.google.com/forum/#!forum/pynq_project
http://jupyter-notebook.readthedocs.org/en/latest/notebook.html#browser-compatibility

Python productivity for Zynq (Pynq) Documentation, Release 2.0

MicroSD Card Setup

Preloaded Micro SD cards are available from Digilent. If you already have a Micro SD card preloaded with the
PYNQ-Z1 image, you can skip this step.

To make your own PYNQ Micro-SD card:

1. Download the PYNQ-Z1 v2.1 image (released 21 Feb 2018)

2. Unzip the image

3. Write the image to a blank Micro SD card (minimum 8GB recommended)

For detailed instructions on writing the SD card using different operating systems, see Writing the SD Card Image.

Board Setup

1. Set the JP4 / Boot jumper to the SD position by placing the jumper over the top two pins of JP4 as
shown in the image. (This sets the board to boot from the Micro-SD card)

2. To power the PYNQ-Z1 from the micro USB cable, set the JP5 / Power jumper to the USB position
by placing the jumper over the top two pins as shown in the image. (You can also power the board
from an external 12V power regulator by setting the jumper to REG.)

3. Insert the Micro SD card loaded with the PYNQ-Z1 image into the Micro SD card slot underneath
the board.

4. Connect the USB cable to your PC/Laptop, and to the PROG - UART / J14 MicroUSB port on the
board

5. Connect the board to Ethernet by following the instructions in Ethernet Setup

6. Turn on the PYNQ-Z1 by following the instructions in Turning On the PYNQ-Z1

Ethernet Setup

You can connect the Ethernet port of the PYNQ-Z1 Ethernet in the following ways:

6 Chapter 2. Summary

http://files.digilent.com/Products/PYNQ/pynq_z1_v2.1.img.zip

Python productivity for Zynq (Pynq) Documentation, Release 2.0

• Connect to a Network Router

• Connect to a Computer

If available, you should connect your board to a network or router with Ethernet access. This will allow you to update
your board and install new packages.

Connect to a Network Router

If you connect to a router, or a network with a DHCP server, your board will automatically get an IP address. You must
make sure you have permission to connect a device to your network, otherwise the board may not connect properly.

Connect to a Router/Network (DHCP):

1. Connect PYNQ-Z1 to Ethernet port on router/switch

2. Connect your computer to Ethernet or WiFi on router/switch

3. Browse to http://pynq:9090

4. Optional: Change the Hostname

5. Optional: Configure Proxy Settings

Connect to a Computer

You will need to have an Ethernet port available on your computer, and you will need to have permissions to configure
your network interface. With a direct connection, you will be able to use PYNQ, but unless you can bridge the Ethernet
connection to the board to an Internet connection on your computer, your board will not have Internet access. You will
be unable to update or load new packages without Internet access.

Connect directly to a computer (Static IP):

1. Assign your computer a static IP address

2. Connect the PYNQ-Z1 to your computer’s ethernet port

3. Browse to http://192.168.2.99:9090

Turning On the PYNQ-Z1

As indicated in step 6 of Board Setup, slide the power switch to the ON position to turn on the board. The Red LD13
LED will come on immediately to confirm that the board has power. After a few seconds, the Yellow/Green LD12 /
Done LED will light up to show that the Zynq® device is operational.

After a minute you should see two Blue LD4 & LD5 LEDs and four Yellow/Green LD0-LD3 LEDs flash simultane-
ously. The Blue LD4-LD5 LEDs will then turn on and off while the Yellow/Green LD0-LD3 LEDs remain on. The
system is now booted and ready for use.

2.1.2 Connecting to Jupyter Notebooks

To connect to Jupyter Notebooks open a web browser and navigate to:

• http://pynq:9090 if your PYNQ-Z1 board is connected to a router or network

• http://192.168.2.99:9090 If your PYNQ-Z1 board is connected to a computer

2.1. Getting Started 7

http://pynq:9090
http://192.168.2.99:9090
http://pynq:9090
http://192.168.2.99:9090

Python productivity for Zynq (Pynq) Documentation, Release 2.0

If your board is configured correctly you will be presented with a login screen. The username is xilinx and the
password is also xilinx.

After logging in, you will recieve the following screen:

The default hostname is pynq and the default static IP address is 192.168.2.99. If you changed the hostname or static
IP of the board, you will need to change the address you browse to.

The first time you connect, it may take a few seconds for your computer to resolve the hostname/IP address.

Example Notebooks

PYNQ uses the Jupyter Notebook environment to provide examples and documentation. Using your broswer you can
view and run the notebook documentation interactively.

We have provided a few introductory notebooks in the Getting_Started folder of the Jupyter home area.

8 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

There are also a number of example notebooks available showing how to use various peripherals with the board.

2.1. Getting Started 9

Python productivity for Zynq (Pynq) Documentation, Release 2.0

The example notebooks have been divided into categories

• common: examples that are not overlay specific

• base: related to the PYNQ-Z1 base overlay

• logictools: related to the PYNQ-Z1 logictools overlay

When you open a notebook and make any changes, or execute cells, the notebook document will be modified. It is
recommended that you “Save a copy” when you open a new notebook. If you want to restore the original versions,
you can download all the example notebooks from GitHub.

Accessing Files on The Board

Samba, a file sharing service, is running on the board. This allows you to access the Pynq home area as a network
drive, to transfer files to and from the board.

Note: In the examples below change the hostname or IP address to match your board settings.

To access the Pynq home area in Windows Explorer type one of the following in the navigation bar.

\\pynq\xilinx # If connected to a Network/Router with DHCP

\\192.168.2.99\xilinx # If connected to a Computer with a Static IP

When prompted, the username is xilinx and the password is xilinx. The following screen should appear:

10 Chapter 2. Summary

https://www.github.com/xilinx/pynq
https://www.samba.org/

Python productivity for Zynq (Pynq) Documentation, Release 2.0

To access the home area in Ubuntu, open a file broswer, click Go -> Enter Location and type one of the following in
the box:

smb://pynq/xilinx # If connected to a Network/Router with DHCP

smb://192.168.2.99/xilinx # If connected to a Computer with a Static IP

When prompted, the username is xilinx and the password is xilinx

2.1.3 Configuring PYNQ

Change the Hostname

If you are on a network where other pynq boards may be connected, you should change your hostname immediately.
This is a common requirement in a work or university environment. You can change the hostname from a terminal.
You can use the USB cable to connect a terminal. A terminal is also available in the Jupyter environment and can be
used from an internet browser.

To access the Jupyter terminal, in the Jupyter portal home area, select New >> Terminal.

This will open a terminal inside the browser as root.

Use the preloaded pynq_hostname.sh script to change your board’s hostname.

2.1. Getting Started 11

Python productivity for Zynq (Pynq) Documentation, Release 2.0

pynq_hostname.sh <NEW HOSTNAME>

The board must be restarted for the changes to be applied.

shutdown -r now

Note that as you are logged in as root, sudo is not required. If you connect a terminal from the USB connection, you
will be logged in as the xilinx user and sudo must be added to these commands.

When the board reboots, reconnect using the new hostname.

If you can’t connect to your board, see the step below to open a terminal using the micro USB cable.

Opening a USB Serial Terminal

If you can’t access the terminal from Jupyter, you can connect the micro-USB cable from your computer to the board
and open a terminal. You can use the terminal to check the network connection of the board. You will need to have
terminal emulator software installed on your computer. PuTTY is one application that can be used, and is available
for free on Windows. To open a terminal, you will need to know the COM port for the board.

On Windows, you can find this in the Windows Device Manager in the control panel.

1. Open the Device Manager, expand the Ports menu

2. Find the COM port for the USB Serial Port. e.g. COM5

3. Open PuTTY

Once PuTTY is open, enter the following settings:

4. Select serial

5. Enter the COM port number

6. Enter the serial terminal settings (below)

7. Click Open

Full terminal Settings:

• 115200 baud

• 8 data bits

• 1 stop bit

• No Parity

• No Flow Control

Hit Enter in the terminal window to make sure you can see the command prompt:

xilinnx@pynq:/home/xilinx#

You can then run the same commands listed above to change the hostname, or configure a proxy.

You can also check the hostname of the board by running the hostname command:

hostname

You can also check the IP address of the board using ifconfig:

12 Chapter 2. Summary

http://www.putty.org/

Python productivity for Zynq (Pynq) Documentation, Release 2.0

ifconfig

Configure Proxy Settings

If your board is connected to a network that uses a proxy, you need to set the proxy variables on the board. Open a ter-
minal as above and enter the following where you should replace “my_http_proxy:8080” and “my_https_proxy:8080”
with your settings.

set http_proxy=my_http_proxy:8080
set https_proxy=my_https_proxy:8080

2.1.4 Troubleshooting

If you are having problems, please see the Troubleshooting section in Frequently Asked Questions (FAQs) or go the
PYNQ support forum

2.2 Jupyter Notebooks

2.2.1 Acknowledgements

The material in this tutorial is specific to PYNQ. Wherever possible, however, it re-uses generic documentation de-
scribing Jupyter notebooks. In particular, we have re-used content from the following example notebooks:

1. What is the Jupyter Notebook?

2. Notebook Basics

3. Running Code

4. Markdown Cells

The original notebooks and further example notebooks are available at Jupyter documentation.

2.2.2 Introduction

If you are reading this documentation from the webpage, you should note that the webpage is a static html version of
the notebook from which it was generated. If the PYNQ platform is available, you can open this notebook from the
getting_started folder in the PYNQ Jupyter landing page.

The Jupyter Notebook is an interactive computing environment that enables users to author notebook documents
that include:

• Live code

• Interactive widgets

• Plots

• Narrative text

• Equations

• Images

• Video

2.2. Jupyter Notebooks 13

http://www.pynq.io/support.html
http://jupyter-notebook.readthedocs.io/en/latest/examples/Notebook/examples_index.html

Python productivity for Zynq (Pynq) Documentation, Release 2.0

These documents provide a complete and self-contained record of a computation that can be converted to various
formats and shared with others electronically, using version control systems (like git/GitHub) or nbviewer.jupyter.org.

Components

The Jupyter Notebook combines three components:

• The notebook web application: An interactive web application for writing and running code interactively and
authoring notebook documents.

• Kernels: Separate processes started by the notebook web application that runs users’ code in a given language
and returns output back to the notebook web application. The kernel also handles things like computations for
interactive widgets, tab completion and introspection.

• Notebook documents: Self-contained documents that contain a representation of all content in the notebook
web application, including inputs and outputs of the computations, narrative text, equations, images, and rich
media representations of objects. Each notebook document has its own kernel.

Notebook web application

The notebook web application enables users to:

• Edit code in the browser, with automatic syntax highlighting, indentation, and tab completion/introspection.

• Run code from the browser, with the results of computations attached to the code which generated them.

• See the results of computations with rich media representations, such as HTML, LaTeX, PNG, SVG, PDF,
etc.

• Create and use interactive JavaScript widgets, which bind interactive user interface controls and visualizations
to reactive kernel side computations.

• Author narrative text using the Markdown markup language.

• Build hierarchical documents that are organized into sections with different levels of headings.

• Include mathematical equations using LaTeX syntax in Markdown, which are rendered in-browser by Math-
Jax.

Kernels

The Notebook supports a range of different programming languages. For each notebook that a user opens, the web
application starts a kernel that runs the code for that notebook. Each kernel is capable of running code in a single
programming language. There are kernels available in the following languages:

• Python https://github.com/ipython/ipython

• Julia https://github.com/JuliaLang/IJulia.jl

• R https://github.com/takluyver/IRkernel

• Ruby https://github.com/minrk/iruby

• Haskell https://github.com/gibiansky/IHaskell

• Scala https://github.com/Bridgewater/scala-notebook

• node.js https://gist.github.com/Carreau/4279371

• Go https://github.com/takluyver/igo

14 Chapter 2. Summary

http://github.com
http://nbviewer.jupyter.org
https://daringfireball.net/projects/markdown/
http://www.mathjax.org/
http://www.mathjax.org/
https://github.com/ipython/ipython
https://github.com/JuliaLang/IJulia.jl
https://github.com/takluyver/IRkernel
https://github.com/minrk/iruby
https://github.com/gibiansky/IHaskell
https://github.com/Bridgewater/scala-notebook
https://gist.github.com/Carreau/4279371
https://github.com/takluyver/igo

Python productivity for Zynq (Pynq) Documentation, Release 2.0

PYNQ is written in Python, which is the default kernel for Jupyter Notebook, and the only kernel installed for Jupyter
Notebook in the PYNQ distribution.

Kernels communicate with the notebook web application and web browser using a JSON over ZeroMQ/WebSockets
message protocol that is described here. Most users don’t need to know about these details, but its important to
understand that kernels run on Zynq, while the web browser serves up an interface to that kernel.

2.2.3 Notebook Documents

Notebook documents contain the inputs and outputs of an interactive session as well as narrative text that accom-
panies the code but is not meant for execution. Rich output generated by running code, including HTML, images,
video, and plots, is embedded in the notebook, which makes it a complete and self-contained record of a computation.

When you run the notebook web application on your computer, notebook documents are just files on your local
filesystem with a .ipynb extension. This allows you to use familiar workflows for organizing your notebooks into
folders and sharing them with others.

Notebooks consist of a linear sequence of cells. There are four basic cell types:

• Code cells: Input and output of live code that is run in the kernel

• Markdown cells: Narrative text with embedded LaTeX equations

• Heading cells: Deprecated. Headings are supported in Markdown cells

• Raw cells: Unformatted text that is included, without modification, when notebooks are converted to different
formats using nbconvert

Internally, notebook documents are JSON data with binary values base64 encoded. This allows them to be read and
manipulated programmatically by any programming language. Because JSON is a text format, notebook documents
are version control friendly.

Notebooks can be exported to different static formats including HTML, reStructeredText, LaTeX, PDF, and slide
shows (reveal.js) using Jupyter’s nbconvert utility. Some of documentation for Pynq, including this page, was
written in a Notebook and converted to html for hosting on the project’s documentation website.

Furthermore, any notebook document available from a public URL or on GitHub can be shared via nbviewer. This
service loads the notebook document from the URL and renders it as a static web page. The resulting web page may
thus be shared with others without their needing to install the Jupyter Notebook.

GitHub also renders notebooks, so any Notebook added to GitHub can be viewed as intended.

2.2.4 Notebook Basics

The Notebook dashboard

The Notebook server runs on the ARM® processor of the PYNQ-Z1. You can open the notebook dashboard by
navigating to pynq:9090 when your board is connected to the network. The dashboard serves as a home page for
notebooks. Its main purpose is to display the notebooks and files in the current directory. For example, here is a
screenshot of the dashboard page for an example directory:

The top of the notebook list displays clickable breadcrumbs of the current directory. By clicking on these breadcrumbs
or on sub-directories in the notebook list, you can navigate your filesystem.

To create a new notebook, click on the “New” button at the top of the list and select a kernel from the dropdown (as
seen below).

Notebooks and files can be uploaded to the current directory by dragging a notebook file onto the notebook list or by
the “click here” text above the list.

2.2. Jupyter Notebooks 15

http://ipython.org/ipython-doc/dev/development/messaging.html
http://en.wikipedia.org/wiki/JSON
http://en.wikipedia.org/wiki/Base64
http://lab.hakim.se/reveal-js/
http://nbviewer.ipython.org
http://pynq:9090

Python productivity for Zynq (Pynq) Documentation, Release 2.0

16 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

The notebook list shows green “Running” text and a green notebook icon next to running notebooks (as seen below).
Notebooks remain running until you explicitly shut them down; closing the notebook’s page is not sufficient.

To shutdown, delete, duplicate, or rename a notebook check the checkbox next to it and an array of controls will appear
at the top of the notebook list (as seen below). You can also use the same operations on directories and files when
applicable.

To see all of your running notebooks along with their directories, click on the “Running” tab:

This view provides a convenient way to track notebooks that you start as you navigate the file system in a long running
notebook server.

2.2.5 Overview of the Notebook UI

If you create a new notebook or open an existing one, you will be taken to the notebook user interface (UI). This UI
allows you to run code and author notebook documents interactively. The notebook UI has the following main areas:

• Menu

• Toolbar

• Notebook area and cells

The notebook has an interactive tour of these elements that can be started in the “Help:User Interface Tour” menu
item.

Modal editor

The Jupyter Notebook has a modal user interface which means that the keyboard does different things depending on
which mode the Notebook is in. There are two modes: edit mode and command mode.

2.2. Jupyter Notebooks 17

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Edit mode

Edit mode is indicated by a green cell border and a prompt showing in the editor area:

When a cell is in edit mode, you can type into the cell, like a normal text editor.

Enter edit mode by pressing Enter or using the mouse to click on a cell’s editor area.

Command mode

Command mode is indicated by a grey cell border with a blue left margin:

When you are in command mode, you are able to edit the notebook as a whole, but not type into individual cells. Most
importantly, in command mode, the keyboard is mapped to a set of shortcuts that let you perform notebook and cell
actions efficiently. For example, if you are in command mode and you press c, you will copy the current cell - no
modifier is needed.

Don’t try to type into a cell in command mode; unexpected things will happen!

Enter command mode by pressing Esc or using the mouse to click outside a cell’s editor area.

Mouse navigation

All navigation and actions in the Notebook are available using the mouse through the menubar and toolbar, both of
which are above the main Notebook area:

18 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Cells can be selected by clicking on them with the mouse. The currently selected cell gets a grey or green border
depending on whether the notebook is in edit or command mode. If you click inside a cell’s editor area, you will enter
edit mode. If you click on the prompt or output area of a cell you will enter command mode.

If you are running this notebook in a live session on the PYNQ-Z1, try selecting different cells and going between edit
and command mode. Try typing into a cell.

If you want to run the code in a cell, you would select it and click the play button in the toolbar, the “Cell:Run” menu
item, or type Ctrl + Enter. Similarly, to copy a cell you would select it and click the copy button in the toolbar or the
“Edit:Copy” menu item. Ctrl + C, V are also supported.

Markdown and heading cells have one other state that can be modified with the mouse. These cells can either be
rendered or unrendered. When they are rendered, you will see a nice formatted representation of the cell’s contents.
When they are unrendered, you will see the raw text source of the cell. To render the selected cell with the mouse, and
execute it. (Click the play button in the toolbar or the “Cell:Run” menu item, or type Ctrl + Enter. To unrender the
selected cell, double click on the cell.

Keyboard Navigation

There are two different sets of keyboard shortcuts: one set that is active in edit mode and another in command mode.

The most important keyboard shortcuts are Enter, which enters edit mode, and Esc, which enters command mode.

In edit mode, most of the keyboard is dedicated to typing into the cell’s editor. Thus, in edit mode there are relatively
few shortcuts. In command mode, the entire keyboard is available for shortcuts, so there are many more. The Help-
>‘‘Keyboard Shortcuts‘‘ dialog lists the available shortcuts.

Some of the most useful shortcuts are:

1. Basic navigation: enter, shift-enter, up/k, down/j

2. Saving the notebook: s

3. Change Cell types: y, m, 1-6, t

4. Cell creation: a, b

5. Cell editing: x, c, v, d, z

6. Kernel operations: i, 0 (press twice)

2.2.6 Running Code

First and foremost, the Jupyter Notebook is an interactive environment for writing and running code. The notebook
is capable of running code in a wide range of languages. However, each notebook is associated with a single kernel.
Pynq, and this notebook is associated with the IPython kernel, which runs Python code.

Code cells allow you to enter and run code

Run a code cell using Shift-Enter or pressing the play button in the toolbar above. The button displays run cell,
select below when you hover over it.

In [1]: a = 10

2.2. Jupyter Notebooks 19

Python productivity for Zynq (Pynq) Documentation, Release 2.0

In []: print(a)

There are two other keyboard shortcuts for running code:

• Alt-Enter runs the current cell and inserts a new one below.

• Ctrl-Enter run the current cell and enters command mode.

Managing the Kernel

Code is run in a separate process called the Kernel. The Kernel can be interrupted or restarted. Try running the
following cell and then hit the stop button in the toolbar above. The button displays interrupt kernel when you hover
over it.

In []: import time
time.sleep(10)

Cell menu

The “Cell” menu has a number of menu items for running code in different ways. These includes:

• Run and Select Below

• Run and Insert Below

• Run All

• Run All Above

• Run All Below

Restarting the kernels

The kernel maintains the state of a notebook’s computations. You can reset this state by restarting the kernel. This is
done from the menu bar, or by clicking on the corresponding button in the toolbar.

sys.stdout

The stdout and stderr streams are displayed as text in the output area.

In []: print("Hello from Pynq!")

Output is asynchronous

All output is displayed asynchronously as it is generated in the Kernel. If you execute the next cell, you will see the
output one piece at a time, not all at the end.

In []: import time, sys
for i in range(8):

print(i)
time.sleep(0.5)

20 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Large outputs

To better handle large outputs, the output area can be collapsed. Run the following cell and then single- or double-
click on the active area to the left of the output:

In []: for i in range(50):
print(i)

2.2.7 Markdown

Text can be added to Jupyter Notebooks using Markdown cells. Markdown is a popular markup language that is a
superset of HTML. Its specification can be found here:

http://daringfireball.net/projects/markdown/

Markdown basics

You can make text italic or bold.

You can build nested itemized or enumerated lists:

• One

– Sublist

* This

• Sublist - That - The other thing

• Two

• Sublist

• Three

• Sublist

Now another list:

1. Here we go

(a) Sublist

(b) Sublist

2. There we go

3. Now this

You can add horizontal rules:

Here is a blockquote:

Beautiful is better than ugly. Explicit is better than implicit. Simple is better than complex. Complex
is better than complicated. Flat is better than nested. Sparse is better than dense. Readability counts.
Special cases aren’t special enough to break the rules. Although practicality beats purity. Errors should
never pass silently. Unless explicitly silenced. In the face of ambiguity, refuse the temptation to guess.
There should be one– and preferably only one –obvious way to do it. Although that way may not be
obvious at first unless you’re Dutch. Now is better than never. Although never is often better than right
now. If the implementation is hard to explain, it’s a bad idea. If the implementation is easy to explain, it
may be a good idea. Namespaces are one honking great idea – let’s do more of those!

2.2. Jupyter Notebooks 21

http://daringfireball.net/projects/markdown/

Python productivity for Zynq (Pynq) Documentation, Release 2.0

And shorthand for links:

Jupyter’s website

Headings

You can add headings by starting a line with one (or multiple) # followed by a space, as in the following example:

Heading 1
Heading 2
Heading 2.1
Heading 2.2

Embedded code

You can embed code meant for illustration instead of execution in Python:

def f(x):
"""a docstring"""
return x**2

or other languages:

if (i=0; i<n; i++) {
printf("hello %d\n", i);
x += 4;

}

LaTeX equations

Courtesy of MathJax, you can include mathematical expressions inline or displayed on their own line.

Inline expressions can be added by surrounding the latex code with $:

Inline example: $e^{i\pi} + 1 = 0$

This renders as:

Inline example: 𝑒𝑖𝜋 + 1 = 0

Expressions displayed on their own line are surrounded by $$:

$$e^x=\sum_{i=0}^\infty \frac{1}{i!}x^i$$

This renders as:

𝑒𝑥 =

∞∑︁
𝑖=0

1

𝑖!
𝑥𝑖

22 Chapter 2. Summary

http://jupyter.org

Python productivity for Zynq (Pynq) Documentation, Release 2.0

GitHub flavored markdown

The Notebook webapp supports Github flavored markdown meaning that you can use triple backticks for code blocks:

<pre>
```python
print "Hello World"
```
</pre>

<pre>
```javascript
console.log("Hello World")
```
</pre>

Gives:

print "Hello World"

console.log("Hello World")

And a table like this:

<pre>
```

| This | is |
|------|------|
| a | table|

```
</pre>

A nice HTML Table:

This is
a table

General HTML

Because Markdown is a superset of HTML you can even add things like HTML tables:

Header 1

Header 2

row 1, cell 1

row 1, cell 2

row 2, cell 1

row 2, cell 2

2.2. Jupyter Notebooks 23

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Local files

If you have local files in your Notebook directory, you can refer to these files in Markdown cells directly:

[subdirectory/]<filename>

Security of local files

Note that the Jupyter notebook server also acts as a generic file server for files inside the same tree as your notebooks.
Access is not granted outside the notebook folder so you have strict control over what files are visible, but for this
reason it is highly recommended that you do not run the notebook server with a notebook directory at a high level in
your filesystem (e.g. your home directory).

When you run the notebook in a password-protected manner, local file access is restricted to authenticated users unless
read-only views are active. For more information, see Jupyter’s documentation on running a notebook server.

2.3 Python Environment

We show here some examples of how to run Python on a Pynq platform. Python 3.6 is running exclusively on the
ARM Cortex-A9 processor.

In the first example, which is based on calculating the factors and primes of integer numbers, give us a sense of the
performance available when running on a 650MHz ARM Cortex- A9 dual core processor running Linux.

In the second set of examples, we leverage Python’s numpy package and asyncio module to demonstrate how
Python can communicate with programmable logic.

2.3.1 Factors and Primes Example

Code is provided in the cell below for a function to calculate factors and primes. It contains some sample functions to
calculate the factors and primes of integers. We will use three functions from the factors_and_primes module
to demonstrate Python programming.

In [1]: """Factors-and-primes functions.

Find factors or primes of integers, int ranges and int lists
and sets of integers with most factors in a given integer interval

"""

def factorize(n):
"""Calculate all factors of integer n.

"""
factors = []
if isinstance(n, int) and n > 0:

if n == 1:
factors.append(n)
return factors

else:
for x in range(1, int(n**0.5)+1):

if n % x == 0:
factors.append(x)
factors.append(n//x)

24 Chapter 2. Summary

http://jupyter-notebook.readthedocs.io/en/latest/public_server.html

Python productivity for Zynq (Pynq) Documentation, Release 2.0

return sorted(set(factors))
else:

print('factorize ONLY computes with one integer argument > 0')

def primes_between(interval_min, interval_max):
"""Find all primes in the interval.

"""
primes = []
if (isinstance(interval_min, int) and interval_min > 0 and

isinstance(interval_max, int) and interval_max > interval_min):
if interval_min == 1:

primes = [1]
for i in range(interval_min, interval_max):

if len(factorize(i)) == 2:
primes.append(i)

return sorted(primes)
else:

print('primes_between ONLY computes over the specified range.')

def primes_in(integer_list):
"""Calculate all unique prime numbers.

"""
primes = []
try:

for i in (integer_list):
if len(factorize(i)) == 2:

primes.append(i)
return sorted(set(primes))

except TypeError:
print('primes_in ONLY computes over lists of integers.')

def get_ints_with_most_factors(interval_min, interval_max):
"""Finds the integers with the most factors.

"""
max_no_of_factors = 1
all_ints_with_most_factors = []

Find the lowest number with most factors between i_min and i_max
if interval_check(interval_min, interval_max):

for i in range(interval_min, interval_max):
factors_of_i = factorize(i)
no_of_factors = len(factors_of_i)
if no_of_factors > max_no_of_factors:

max_no_of_factors = no_of_factors
results = (i, max_no_of_factors, factors_of_i,\

primes_in(factors_of_i))
all_ints_with_most_factors.append(results)

Find any larger numbers with an equal number of factors
for i in range(all_ints_with_most_factors[0][0]+1, interval_max):

factors_of_i = factorize(i)
no_of_factors = len(factors_of_i)
if no_of_factors == max_no_of_factors:

2.3. Python Environment 25

Python productivity for Zynq (Pynq) Documentation, Release 2.0

results = (i, max_no_of_factors, factors_of_i, \
primes_in(factors_of_i))

all_ints_with_most_factors.append(results)
return all_ints_with_most_factors

else:
print_error_msg()

def interval_check(interval_min, interval_max):
"""Check type and range of integer interval.

"""
if (isinstance(interval_min, int) and interval_min > 0 and

isinstance(interval_max, int) and interval_max > interval_min):
return True

else:
return False

def print_error_msg():
"""Print invalid integer interval error message.

"""
print('ints_with_most_factors ONLY computes over integer intervals where'

' interval_min <= int_with_most_factors < interval_max and'
' interval_min >= 1')

Next we will call the factorize() function to calculate the factors of an integer.

In [2]: factorize(1066)

Out[2]: [1, 2, 13, 26, 41, 82, 533, 1066]

The primes_between() function can tell us how many prime numbers there are in an integer range. Let’s try it for the
interval 1 through 1066. We can also use one of Python’s built-in methods len() to count them all.

In [3]: len(primes_between(1, 1066))

Out[3]: 180

Additionally, we can combine len() with another built-in method, sum(), to calculate the average of the 180 prime
numbers.

In [4]: primes_1066 = primes_between(1, 1066)
primes_1066_average = sum(primes_1066) / len(primes_1066)
primes_1066_average

Out[4]: 486.2055555555556

This result makes sense intuitively because prime numbers are known to become less frequent for larger number
intervals. These examples demonstrate how Python treats functions as first-class objects so that functions may be
passed as parameters to other functions. This is a key property of functional programming and demonstrates the power
of Python.

In the next code snippet, we can use list comprehensions (a ‘Pythonic’ form of the map-filter-reduce template) to
‘mine’ the factors of 1066 to find those factors that end in the digit ‘3’.

In [5]: primes_1066_ends3 = [x for x in primes_between(1, 1066)
if str(x).endswith('3')]

print('{}'.format(primes_1066_ends3))

[3, 13, 23, 43, 53, 73, 83, 103, 113, 163, 173, 193, 223, 233, 263, 283, 293, 313,
353, 373, 383, 433, 443, 463, 503, 523, 563, 593, 613, 643, 653, 673, 683, 733, 743,
773, 823, 853, 863, 883, 953, 983, 1013, 1033, 1063]

26 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

This code tells Python to first convert each prime between 1 and 1066 to a string and then to return those numbers
whose string representation end with the number ‘3’. It uses the built-in str() and endswith() methods to test each
prime for inclusion in the list.

And because we really want to know what fraction of the 180 primes of 1066 end in a ‘3’, we can calculate . . .

In [6]: len(primes_1066_ends3) / len(primes_1066)

Out[6]: 0.25

These examples demonstrate how Python is a modern, multi-paradigmatic language. More simply, it continually
integrates the best features of other leading languages, including functional programming constructs. Consider how
many lines of code you would need to implement the list comprehension above in C and you get an appreciation
of the power of productivity-layer languages. Higher levels of programming abstraction really do result in higher
programmer productivity!

2.3.2 Numpy Data Movement

Code in the cells below show a very simple data movement code snippet that can be used to share data with pro-
grammable logic. We leverage the Python numpy package to manipulate the buffer on the ARM processors and can
then send a buffer pointer to programmable logic for sharing data.

We do not assume what programmable logic design is loaded, so here we only allocate the needed memory space and
show that it can manipulated as a numpy array and contains a buffer pointer attribute. That pointer can then can be
passed to programmable logic hardware.

In [7]: import numpy as np
import pynq

def get_pynq_buffer(shape, dtype):
""" Simple function to call PYNQ's memory allocator with numpy attributes

"""
return pynq.Xlnk().cma_array(shape, dtype)

With the simple wrapper above, we can get access to memory that can be shared by both numpy methods and pro-
grammable logic.

In [8]: buffer = get_pynq_buffer(shape=(4,4), dtype=np.uint32)
buffer

Out[8]: CMABuffer([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=uint32)

To double-check we show that the buffer is indeed a numpy array.

In [9]: isinstance(buffer,np.ndarray)

Out[9]: True

To send the buffer pointer to programmable logic, we use its physical address which is what programmable logic
would need to communicate using this shared buffer.

In [10]: pl_buffer_address = hex(buffer.physical_address)
pl_buffer_address

Out[10]: '0x16846000'

In this short example, we showed a simple allocation of a numpy array that is now ready to be shared with pro-
grammable logic devices. With numpy arrays that are accessible to programmable logic, we can quickly manipulate
and move data across software and hardware.

2.3. Python Environment 27

Python productivity for Zynq (Pynq) Documentation, Release 2.0

2.3.3 Asyncio Integration

PYNQ also leverages the Python asyncio module for communicating with programmable logic devices through events
(namely interrupts).

A Python program running on PYNQ can use the asyncio library to manage multiple IO-bound tasks asynchronously,
thereby avoiding any blocking caused by waiting for responses from slower IO subsystems. Instead, the program can
continue to execute other tasks that are ready to run. When the previously-busy tasks are ready to resume, they will be
executed in turn, and the cycle is repeated.

Again, since we won’t assume what interrupt enabled devices are loaded on programmable logic, we will show an
example here a software-only asyncio example that uses asyncio’s sleep method.

In [11]: import asyncio
import random
import time

Coroutine
async def wake_up(delay):

'''A function that will yield to asyncio.sleep() for a few seconds
and then resume, having preserved its state while suspended

'''
start_time = time.time()
print(f'The time is: {time.strftime("%I:%M:%S")}')

print(f"Suspending coroutine 'wake_up' at 'await` statement\n")
await asyncio.sleep(delay)

print(f"Resuming coroutine 'wake_up' from 'await` statement")
end_time = time.time()
sleep_time = end_time - start_time
print(f"'wake-up' was suspended for precisely: {sleep_time} seconds")

With the wake_up function defined, we then can add a new task to the event loop.

In [12]: delay = random.randint(1,5)
my_event_loop = asyncio.get_event_loop()

try:
print("Creating task for coroutine 'wake_up'\n")
wake_up_task = my_event_loop.create_task(wake_up(delay))
my_event_loop.run_until_complete(wake_up_task)

except RuntimeError as err:
print (f'{err}' +

' - restart the Jupyter kernel to re-run the event loop')
finally:

my_event_loop.close()

Creating task for coroutine 'wake_up'

The time is: 10:29:45
Suspending coroutine 'wake_up' at 'await` statement

Resuming coroutine 'wake_up' from 'await` statement
'wake-up' was suspended for precisely: 3.011084794998169 seconds

All the above examples show standard Python 3.6 running on the PYNQ platform. This entire notebook can be run on
the PYNQ board - see the getting_started folder on the Jupyter landing page to rerun this notebook.

28 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

2.4 PYNQ Overlays

The Xilinx® Zynq® All Programmable device is an SOC based on a dual-core ARM® Cortex®-A9 processor (referred
to as the Processing System or PS), integrated with FPGA fabric (referred to as Programmable Logic or PL). The PS
subsystem includes a number of dedicated peripherals (memory controllers, USB, Uart, IIC, SPI etc) and can be
extended with additional hardware IP in a PL Overlay.

Overlays, or hardware libraries, are programmable/configurable FPGA designs that extend the user application from
the Processing System of the Zynq into the Programmable Logic. Overlays can be used to accelerate a software
application, or to customize the hardware platform for a particular application.

For example, image processing is a typical application where the FPGAs can provide acceleration. A software pro-
grammer can use an overlay in a similar way to a software library to run some of the image processing functions (e.g.
edge detect, thresholding etc.) on the FPGA fabric. Overlays can be loaded to the FPGA dynamically, as required,
just like a software library. In this example, separate image processing functions could be implemented in different
overlays and loaded from Python on demand.

PYNQ provides a Python interface to allow overlays in the PL to be controlled from Python running in the PS.
FPGA design is a specialized task which requires hardware engineering knowledge and expertise. PYNQ overlays are
created by hardware designers, and wrapped with this PYNQ Python API. Software developers can then use the Python
interface to program and control specialized hardware overlays without needing to design an overlay themselves. This
is analogous to software libraries created by expert developers which are then used by many other software developers
working at the application level.

2.4.1 Loading an Overlay

By default, the base overlay is loaded at boot time on PYNQ-Z1 board. New overlays can be installed or copied to the
board and can be loaded as the system is running.

An overlay usually includes:

• A bitstream to configure the FPGA fabric

• A Vivado design Tcl file to determine the available IP

• Python API that exposes the IPs as attributes

The PYNQ Overlay class can be used to load an overlay. An overlay is instantiated by specifying the name of the
bitstream file. Instantiating the Overlay also downloads the bitstream by default and parses the Tcl file.

from pynq import Overlay
overlay = Overlay("base.bit")

2.4. PYNQ Overlays 29

Python productivity for Zynq (Pynq) Documentation, Release 2.0

For the base overlay, we can use the existing BaseOverlay class; this class exposes the IPs available on the bitstream
as attributes of this class.

In [1]: from pynq.overlays.base import BaseOverlay
base_overlay = BaseOverlay("base.bit")

Once an overlay has been instantiated, the help() method can be used to discover what is in an overlay about. The
help information can be used to interact with the overlay.

In [2]: help(base_overlay)

Help on BaseOverlay in module pynq.overlays.base.base object:

class BaseOverlay(pynq.overlay.Overlay)
| The Base overlay for the Pynq-Z1
|
| This overlay is designed to interact with all of the on board peripherals
| and external interfaces of the Pynq-Z1 board. It exposes the following
| attributes:
|
Attributes
iop1 : IOP
IO processor connected to the PMODA interface
iop2 : IOP
IO processor connected to the PMODB interface
iop3 : IOP
IO processor connected to the Arduino/ChipKit interface
trace_pmoda : pynq.logictools.TraceAnalyzer
Trace analyzer block on PMODA interface, controlled by PS.
trace_pmodb : pynq.logictools.TraceAnalyzer
Trace analyzer block on PMODB interface, controlled by PS.
trace_arduino : pynq.logictools.TraceAnalyzer
Trace analyzer block on Arduino interface, controlled by PS.
leds : AxiGPIO
4-bit output GPIO for interacting with the green LEDs LD0-3
buttons : AxiGPIO
4-bit input GPIO for interacting with the buttons BTN0-3
switches : AxiGPIO
2-bit input GPIO for interacting with the switches SW0 and SW1
rgbleds : [pynq.board.RGBLED]
Wrapper for GPIO for LD4 and LD5 multicolour LEDs
video : pynq.lib.video.HDMIWrapper
HDMI input and output interfaces
audio : pynq.lib.audio.Audio
Headphone jack and on-board microphone
Method resolution order:
BaseOverlay
pynq.overlay.Overlay
pynq.pl.Bitstream
builtins.object
Methods defined here:
__init__(self, bitfile, **kwargs)
Return a new Overlay object.
An overlay instantiates a bitstream object as a member initially.

30 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Parameters
bitfile_name : str
The bitstream name or absolute path as a string.
download : boolean or None
Whether the overlay should be downloaded. If None then the
overlay will be downloaded if it isn't already loaded.
Note

This class requires a Vivado '.tcl' file to be next to bitstream file
with same name (e.g. base.bit and base.tcl).
--
Methods inherited from pynq.overlay.Overlay:
__dir__(self)
__dir__() -> list
default dir() implementation
__getattr__(self, key)
Overload of __getattr__ to return a driver for an IP or
hierarchy. Throws an `RuntimeError` if the overlay is not loaded.
download(self)
The method to download a bitstream onto PL.
Note

After the bitstream has been downloaded, the "timestamp" in PL will be
updated. In addition, all the dictionaries on PL will
be reset automatically.
Returns

None
is_loaded(self)
This method checks whether a bitstream is loaded.
This method returns true if the loaded PL bitstream is same
as this Overlay's member bitstream.
Returns

bool
True if bitstream is loaded.
load_ip_data(self, ip_name, data)
This method loads the data to the addressable IP.
Calls the method in the super class to load the data. This method can
be used to program the IP. For example, users can use this method to
load the program to the Microblaze processors on PL.
Note

The data is assumed to be in binary format (.bin). The data name will
be stored as a state information in the IP dictionary.

2.4. PYNQ Overlays 31

Python productivity for Zynq (Pynq) Documentation, Release 2.0

|
Parameters
ip_name : str
The name of the addressable IP.
data : str
The absolute path of the data to be loaded.
Returns

None
reset(self)
This function resets all the dictionaries kept in the overlay.
This function should be used with caution.
Returns

None
--
Data descriptors inherited from pynq.pl.Bitstream:
__dict__
dictionary for instance variables (if defined)
__weakref__
list of weak references to the object (if defined)

This will give a list of the IP and methods available as part of the overlay.

From the help() print out above, it can be seen that in this case the overlay includes an leds instance, and from the
report this is an AxiGPIO class:

"""
leds : AxiGPIO

4-bit output GPIO for interacting with the green LEDs LD0-3
"""

Running help() on the leds object will provide more information about the object including details of its API.

In [3]: help(base_overlay.leds)

Help on Channel in module pynq.lib.axigpio object:

class Channel(builtins.object)
| Class representing a single channel of the GPIO controller.
|
| Wires are and bundles of wires can be accessed using array notation
| with the methods on the wires determined by the type of the channel::
|
| input_channel[0].read()
| output_channel[1:3].on()
|
| This class instantiated not used directly, instead accessed through
| the `AxiGPIO` classes attributes. This class exposes the wires
| connected to the channel as an array or elements. Slices of the

32 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

| array can be assigned simultaneously.
|
| Methods defined here:
|
| __getitem__(self, idx)
|
| __init__(self, parent, channel)
| Initialize self. See help(type(self)) for accurate signature.
|
| __len__(self)
|
| read(self)
| Read the state of the input pins
|
| setdirection(self, direction)
| Set the direction of the channel
|
| Must be one of AxiGPIO.{Input, Output, InOut} or the string
| 'in', 'out', or 'inout'
|
| setlength(self, length)
| Set the number of wires connected to the channel
|
| wait_for_interrupt_async(self)
| Wait for the interrupt on the channel to be signalled
|
| This is intended to be used by slices waiting for a particular
| value but can be used in any situation to wait for a per-channel
| interrupt.
|
| write(self, val, mask)
| Set the state of the output pins
|
| --
| Data descriptors defined here:
|
| __dict__
| dictionary for instance variables (if defined)
|
| __weakref__
| list of weak references to the object (if defined)
|
| trimask
| Gets or sets the tri-state mask for an inout channel

The API can be used to control the object. For example, the following cell will turn on LD0 on the board.

In [4]: base_overlay.leds[0].toggle()

Information about other IP can be found from the overlay instance in a similar way, as shown below.

In [5]: help(base_overlay.video)

Help on HDMIWrapper in module pynq.lib.video object:

class HDMIWrapper(pynq.overlay.DefaultHierarchy)
| Hierarchy driver for the entire Pynq-Z1 video subsystem.
|
| Exposes the input, output and video DMA as attributes. For most
| use cases the wrappers for the input and output pipelines are

2.4. PYNQ Overlays 33

Python productivity for Zynq (Pynq) Documentation, Release 2.0

| sufficient and the VDMA will not need to be used directly.
|
Attributes
hdmi_in : pynq.lib.video.HDMIIn
The HDMI input pipeline
hdmi_out : pynq.lib.video.HDMIOut
The HDMI output pipeline
axi_vdma : pynq.lib.video.AxiVDMA
The video DMA.
Method resolution order:
HDMIWrapper
pynq.overlay.DefaultHierarchy
pynq.overlay._IPMap
builtins.object
Methods defined here:
__init__(self, description)
Create a new _IPMap based on a hierarchical description.
--
Static methods defined here:
checkhierarchy(description)
Function to check if the driver matches a particular hierarchy
This function should be redefined in derived classes to return True
if the description matches what is expected by the driver. The default
implementation always returns False so that drivers that forget don't
get loaded for hierarchies they don't expect.
--
Methods inherited from pynq.overlay._IPMap:
__dir__(self)
__dir__() -> list
default dir() implementation
__getattr__(self, key)
--
Data descriptors inherited from pynq.overlay._IPMap:
__dict__
dictionary for instance variables (if defined)
__weakref__
list of weak references to the object (if defined)

2.4.2 Base Overlay

The purpose of the base overlay design is to allow PYNQ to use peripherals on a board out-of-the-box. The design
includes hardware IP to control peripherals on the target board, and connects these IP blocks to the Zynq PS. If a base
overlay is available for a board, peripherals can be used from the Python environment immediately after the system

34 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

boots.

Board peripherals typically include GPIO devices (LEDs, Switches, Buttons), Video, Audio, and other custom inter-
faces.

As the base overlay includes IP for the peripherals on a board, it can also be used as a reference design for creating
new customized overlays.

In the case of general purpose interfaces, for example Pmod or Arduino headers, the base overlay may include a PYNQ
MicroBlaze. A PYNQ MicroBlaze allows control of devices with different interfaces and protocols on the same port
without requiring a change to the programmable logic design.

See PYNQ Libraries for more information on PYNQ MicroBlazes.

PYNQ-Z1 Block Diagram

The base overlay on PYNQ-Z1 includes the following hardware:

• HDMI (Input and Output)

• Microphone in

• Audio out

• User LEDs, Switches, Pushbuttons

• 2x Pmod PYNQ MicroBlaze

• Arduino PYNQ MicroBlaze

• 3x Trace Analyzer (PMODA, PMODB, ARDUINO)

HDMI

The PYNQ-Z1 has HDMI in and HDMI out ports. The HDMI interfaces are connected directly to PL pins. i.e. There
is no external HDMI circuitry on the board. The HDMI interfaces are controlled by HDMI IP in the programmable
logic.

2.4. PYNQ Overlays 35

Python productivity for Zynq (Pynq) Documentation, Release 2.0

The HDMI IP is connected to PS DRAM. Video can be streamed from the HDMI in to memory, and from memory to
HDMI out. This allows processing of video data from python, or writing an image or Video stream from Python to the
HDMI out.

Note that while Jupyter notebook supports embedded video, video captured from the HDMI will be in raw format and
would not be suitable for playback in a notebook without appropriate encoding.

For information on the physical HDMI interface ports, see the Digilent HDMI reference for the PYNQ-Z1 board

HDMI In

The HDMI in IP can capture standard HDMI resolutions. After a HDMI source has been connected, and the HDMI
controller for the IP is started, it will automatically detect the incoming data. The resolution can be read from the
HDMI Python class, and the image data can be streamed to the PS DRAM.

HDMI Out

The HDMI out IP supports the following resolutions:

• 640x480

• 800x600

• 1280x720 (720p)

• 1280x1024

• 1920x1080 (1080p)*

*While the Pynq-Z1 cannot meet the official HDMI specification for 1080p, some HDMI devices at this resolution
may work.

Data can be streamed from the PS DRAM to the HDMI output. The HDMI Out controller contains framebuffers to
allow for smooth display of video data.

See example video notebooks in the <Jupyter Dashboard>/base/video directory on the board.

Microphone In

The PYNQ-Z1 board has an integrated microphone on the board and is connected directly to the Zynq PL pins, and
does not have an external audio codec. The microphone generates audio data in PDM format.

For more information on the audio hardware, see the Digilent MIC in reference for the PYNQ-Z1 board

See example audio notebooks in the <Jupyter Dashboard>/base/audio directory on the board.

Audio Out

The audio out IP is connected to a standard 3.5mm audio jack on the board. The audio output is PWM driven mono.

For more information on the audio hardware, see the Digilent Audio Out reference for the PYNQ-Z1 board

See example audio notebooks in the <Jupyter Dashboard>/base/audio directory on the board.

36 Chapter 2. Summary

https://reference.digilentinc.com/reference/programmable-logic/pynq-z1/reference-manual#hdmi
https://reference.digilentinc.com/reference/programmable-logic/pynq-z1/reference-manual#microphone
https://reference.digilentinc.com/reference/programmable-logic/pynq-z1/reference-manual#mono_audio_output

Python productivity for Zynq (Pynq) Documentation, Release 2.0

User IO

The PYNQ-Z1 board includes two tri-color LEDs, 2 switches, 4 push buttons, and 4 individual LEDs. These IO are
connected directly to Zynq PL pins. In the PYNQ-Z1 base overlay, these IO are routed to the PS GPIO, and can be
controlled directly from Python.

PYNQ MicroBlaze

PYNQ MicroBlazes are dedicated MicroBlaze soft-processor subsystems that allow peripherals with different IO
standards to be connected to the system on demand. This allows a software programmer to use a wide range of
peripherals with different interfaces and protocols. By using a PYNQ MicroBlaze, the same overlay can be used to
support different peripheral without requiring a different overlay for each peripheral.

There are two types of PYNQ MicroBlazes: Pmod, and Arduino. The Pmod and Arduino ports, which the PYNQ
MicroBlazes connect to, have a different number of pins and can support different sets of peripherals. Both types
of PYNQ MicroBlaze have a similar architecture, but have different IP configurations to support the different sets of
peripheral and interface pins.

PYNQ MicroBlaze block diagram and examples can be found in PYNQ MicroBlaze Subsystem.

Trace Analyzer

Trace analyzer blocks are connected to the interface pins for the two Pmod PYNQ MicroBlazes, and the Arduino
PYNQ MicroBlaze. The trace analyzer can capture IO signals and stream the data to the PS DRAM for analysis in the
Python environment.

Using the Python Wavedrom package, the signals from the trace analyzer can be displayed as waveforms in a Jupyter
notebook.

On the base overlay, the trace analyzers are controlled by PS directly. In fact, on other overlays, the trace analyzers
can also be controlled by PYNQ MicroBlaze.

See the example notebook in the <Jupyter Dashboard>/base/trace directory on the board.

Python API

The Python API for the peripherals in the base overlay is covered in PYNQ Libraries. Example notebooks are also
provided on the board to show how to use the base overlay.

Rebuilding the Overlay

The project files for the overlays can be found here:

<PYNQ repository>/boards/<board>/base

Linux

A Makefile is provided to rebuild the base overlay in Linux. The Makefile calls two tcl files. The first Tcl files compiles
any HLS IP used in the design. The second Tcl builds the overlay.

To rebuild the overlay, source the Xilinx tools first. Then assuming PYNQ has been cloned:

2.4. PYNQ Overlays 37

Python productivity for Zynq (Pynq) Documentation, Release 2.0

cd <PYNQ repository>/boards/Pynq-Z1/base
make

Windows

In Windows, the two Tcl files can be sourced in Vivado to rebuild the overlay. The Tcl files to rebuild the overlay can
be sourced from the Vivado GUI, or from the Vivado Tcl Shell (command line).

To rebuild from the Vivado GUI, open Vivado. In the Vivado Tcl command line window change to the correct directory,
and source the Tcl files as indicated below.

Assuming PYNQ has been cloned:

cd <PYNQ repository>/boards/Pynq-Z1/base
source ./build_base_ip.tcl
source ./base.tcl

To build from the command line, open the Vivado 2017.4 Tcl Shell, and run the following:

cd <PYNQ repository>/boards/Pynq-Z1/base
vivado -mode batch -source build_base_ip.tcl
vivado -mode batch -source base.tcl

Note that you must change to the overlay directory, as the tcl files has relative paths that will break if sourced from a
different location.

2.4.3 Logictools Overlay

The logictools overlay consists of programmable hardware blocks to connect to external digital logic circuits. Finite
state machines, Boolean logic functions and digital patterns can be generated from Python. A programmable switch
connects the inputs and outputs from the hardware blocks to external IO pins. The logictools overlay can also has a
trace analyzer to capture data from the IO interface for analysis and debug.

38 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

PYNQ-Z1 Block Diagram

The logictools overlay on PYNQ-Z1 includes four main hardware blocks:

• Pattern Generator

• FSM Generator

• Boolean Generator

• Trace Analyzer

Each block is configured using a textual description specified in Python. No compilation of the configuration is
required. This means a configuration can be loaded directly to the generator and run immediately.

Pattern Generator

The Pattern Generator can be configured to generate and stream arbitrary digital patterns to the external IO pins. The
Pattern Generator can be used as a stimulus to test or control an external circuit.

Finite State Machine (FSM) Generator

The FSM Generator can create a finite state machine from a Python description. The inputs and outputs and states of
the FSM can be connected to external IO pins.

Boolean Generator

The Boolean Generator can create independent combinatorial Boolean logic functions. The external IO pins are used
as inputs and outputs to the Boolean functions.

2.4. PYNQ Overlays 39

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Trace Analyzer

The Trace Analyzer can capture IO signals and stream the data to the PS DRAM for analysis in the Python environment.
The Trace Analyzer can be used standalone to capture external IO signals, or used in combination with the other three
logictools functions to monitor data to and from the other blocks. E.g. the trace analyzer can be used with the pattern
generator to verify the data sent to the external pins, or with the FSM to check the input, output or states to verify or
debug a design.

PYNQ MicroBlaze

A PYNQ MicroBlaze is used to control all the generators and analyzers. The PYNQ MicroBlaze subsystem on
logictools overlay also manages contiguous memory buffers, configures the clock frequency, and keeps track of the
generator status. For more information, please see PYNQ Libraries.

Python API

The API for the logictools generators and trace analyzer can be found in PYNQ Libraries.

Rebuilding the Overlay

The process to rebuild the logictools overlay is similar to the base overlay.

All source code for the hardware blocks is provided. Each block can also be reused standalone in a custom overlay.

The source files for the logictools IP can be found in:

<PYNQ Repository>/boards/ip

The project files for the logictools overlay can be found here:

<PYNQ Repository>/boards/<board_name>/logictools

Linux

To rebuild the overlay, source the Xilinx tools first. Then assuming PYNQ has been cloned:

cd <PYNQ Repository>/boards/Pynq-Z1/logictools
make

Windows

To rebuild from the Vivado GUI, open Vivado. In the Vivado Tcl command line window, change to the correct
directory, and source the Tcl files as indicated below.

Assuming PYNQ has been cloned:

cd <PYNQ Repository>/boards/Pynq-Z1/logictools
source ./build_logictools_ip.tcl
source ./logictools.tcl

To build from the command line, open the Vivado 2017.4 Tcl Shell, and run the following:

40 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

cd <PYNQ Repository>/boards/Pynq-Z1/logictools
vivado -mode batch -source build_logictools_ip.tcl
vivado -mode batch -source logictools.tcl

Note that you must change to the overlay directory, as the .tcl files has relative paths that will break if sourced from a
different location.

2.5 PYNQ Libraries

Typical embedded systems support a fixed combination of peripherals (e.g. SPI, IIC, UART, Video, USB). There may
also be some GPIO (General Purpose Input/Output pins) available. The number of GPIO available in a CPU based
embedded system is typically limited, and the GPIO are also controlled by the main CPU. As the main CPU which is
managing the rest of the system, GPIO performance is usually limited.

Zynq platforms usually have many more IO pins available than a typical embedded system. Dedicated hardware
controllers and additional soft processors can be implemented in the PL and connected to external interfaces. This
means performance on these interfaces can be much higher than other embedded system.

PYNQ runs on Linux which uses the following Zynq PS peripherals by default: SD Card to boot the system and host
the Linux file system, Ethernet to connect to Jupyter notebook, UART for Linux terminal access, and USB.

The USB port and other standard interfaces can be used to connect off-the-shelf USB and other peripherals to the
Zynq PS where they can be controlled from Python/Linux. The PYNQ image currently includes drivers for the most
commonly used USB webcams, WiFi peripherals, and other standard USB devices.

Other peripherals can be connected to and accessed from the Zynq PL. E.g. HDMI, Audio, Buttons, Switches, LEDs,
and general purpose interfaces including Pmods, and Arduino. As the PL is programmable, an overlay which provides
controllers for these peripherals or interfaces must be loaded before they can be used.

A library of hardware IP is included in Vivado which can be used to connect to a wide range of interface standards and
protocols. PYNQ provides a Python API for a number of common peripherals including Video (HDMI in and Out),
GPIO devices (Buttons, Switches, LEDs), and sensors and actuators. The PYNQ API can also be extended to support
additional IP.

Zynq platforms usually have one or more headers or interfaces that allow connection of external peripherals, or to
connect directly to the Zynq PL pins. A range of off-the-shelf peripherals can be connected to Pmod and Arduino
interfaces. Other peripherals can be connected to these ports via adapters, or with a breadboard. Note that while a
peripheral can be physically connected to the Zynq PL pins, a controller must be built into the overlay, and a software
driver provided, before the peripheral can be used.

2.5.1 PS GPIO

The Zynq device has up to 64 GPIO from PS to PL. These can be used for simple control type operations. For example,
in the base overlay, the PS GPIO wires are used as the reset signals for the IOPs. The PS GPIO are a very simple
interface and there is no IP required in the PL to use them.

The GPIO class is used to control the GPIO.

2.5. PYNQ Libraries 41

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Block Diagram

Linux GPIO

The PS GPIO use a Linux kernel module to control the GPIO. This means that the operating systems assign a number
to the GPIO at run time. Before using the PS GPIO, the Linux pin number must be mapped to the Python GPIO
instance.

The get_gpio_pin() function which is part of the GPIO class is used to map the PS pin number to the Linux pin
number. See the example below on how it can be used.

Examples

from pynq import GPIO

ps_led = GPIO(GPIO.get_gpio_pin(0), 'out')
ps_switch = GPIO(GPIO.get_gpio_pin(1), 'in')

ps_led.write(0)
ps_switch.read(1)

More information about the GPIO module and the API for reading, writing and waiting for interrupts can be found in
the pynq.gpio Module sections

2.5.2 AxiGPIO

The AxiGPIO module provides methods to read, write, and receive interrupts from external general purpose peripherals
such as LEDs, buttons, switches connected to the PL using AXI GPIO controller IP.

Block Diagram

The AxiGPIO module controls instances of the AXI GPIO controller in the PL. Each AXI GPIO can have up to two
channels each with up to 32 pins.

42 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

The direction, and width of each channel can be set with the setdirection(), and setlength() methods. The
read() and write() methods are used to read and write data.

The interrupt signal, ip2intc_irpt from the AXI GPIO can be connected directly to an AXI interrupt controller to cause
interrupts in the PS. More information about AsyncIO and Interrupts can be found in the PYNQ and Asyncio section.

The LED, Switch, Button and RGBLED classes extend the AxiGPIO controller and are customized for the correspond-
ing peripherals. These classes expect an AXI GPIO instance called [led|switche|button|rgbleds]_gpio
to exist in the overlay used with this class.

Examples

Note that this example uses the AxiGPIO instances in the base overlay directly with the AxiGPIO class. This example
is for illustration, to show how to use the AxiGPIO class. In practice, the LED, Button, Switches, and RGBLED
classes which extend the AxiGPIO class should be used for these peripherals.

After an overlay has been loaded, an AxiGPIO instance can be instantiated by passing the AxiGPIO name to the class.

from pynq import Overlay
ol = Overlay("base.bit")

ip_instance = ol.ip_dict['leds_gpio']
buttons = AxiGPIO(ip_instance).channel1

.. code-block:: Python

mask = 0x3 # Mask which controls which bits are written to

buttons.setdirection("out")
buttons.setlength(2)

2.5. PYNQ Libraries 43

Python productivity for Zynq (Pynq) Documentation, Release 2.0

buttons.write(0x2, mask) # Write 0x2 to the LEDs

.. code-block:: Python

ip_instance = ol.ip_dict['switches_gpio']
switches = AxiGPIO(ip_instance).channel1

switches.setdirection("in")
switches.setlength(3)
switches.read()

More information about the AxiGPIO module and the API for reading, writing and waiting for interrupts can be found
in the pynq.lib.axigpio Module sections.

For more examples see the “Buttons and LEDs demonstration” notebook on the PYNQ-Z1 board at:

<Jupyter Home>/base/board/board_btns_leds.ipynb

2.5.3 MMIO

The MMIO class allows a Python object to access addresses in the system memory mapped. In particular, registers
and address space of peripherals in the PL can be accessed.

AXI GP ports

In an overlay, peripherals connected to the AXI General Purpose ports will have their registers or address space mapped
into the system memory map. With PYNQ, the register, or address space of an IP can be accessed from Python using
the MMIO class.

MMIO provides a simple but powerful way to access and control peripherals. For simple peripherals with a small
number of memory accesses, or where performance is not critical, MMIO is usually sufficient for most developers.
If performance is critical, or large amounts of data need to be transferred between PS and PL, using the Zynq HP
interfaces with DMA IP and the PYNQ DMA class may be more appropriate.

Example

In this example, data is written to an IP and read back from the same address.

IP_BASE_ADDRESS = 0x40000000
ADDRESS_RANGE = 0x1000
ADDRESS_OFFSET = 0x10

from pynq import MMIO
mmio = MMIO(IP_BASE_ADDRESS, ADDRESS_RANGE)

44 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

data = 0xdeadbeef
self.mmio.write(ADDRESS_OFFSET, data)
result = self.mmio.read(ADDRESS_OFFSET)

This example assumes the memory mapped area defined for the MMIO, from 0x40000000 to 0x40001000, is
accessible to the PS.

More information about the MMIO module can be found in the pynq.mmio Module sections

2.5.4 Xlnk

The Xlnk class Is used to allocated contiguous memory.

IP connected to the AXI Master (HP or ACP ports) has access to PS DRAM. Before IP in the PL accesses DRAM,
some memory must first be allocated (reserved) for the IP to use and the size, and address of the memory passed to the
IP. An array in Python, or Numpy, will be allocated somewhere in virtual memory. The physical memory address of
the allocated memory must be provided to IP in the PL.

Xlnk can allocate memory, and also provide the physical pointer. It also allocates contiguous memory which is more
efficient for PL IP to use.

Xlnk can allocate arrays using the Python NumPy package. This allows the data type, and size/shape of the array to
be specified using NumPy.

Xlnk is also used implicitly by the DMA class to allocate memory.

Example

Create an Xlnk instance and use cma_array() to allocate a unsigned 32-bit int contiguous block of memory of 5
elements:

Allocating the memory buffer:

from pynq import Xlnk
import numpy as np

xlnk = Xlnk()
input_buffer = xlnk.cma_array(shape=(5,), dtype=np.uint32)

physical_address property of the memory buffer:

input_buffer.physical_address

Writing data to the buffer:

for i in range(5):
input_buffer[i] = i

Input buffer: [0 1 2 3 4]

More information about the MMIO module can be found in the pynq.xlnk Module sections

2.5. PYNQ Libraries 45

Python productivity for Zynq (Pynq) Documentation, Release 2.0

2.5.5 DMA

PYNQ supports the AXI central DMA IP with the PYNQ DMA class. DMA can be used for high performance burst
transfers between PS DRAM and the PL.

The DMA class supports simple mode only

Block Diagram

The DMA has an AXI lite control interface, and a read and write channel which consist of a AXI master port to access
the memory location, and a stream port to connect to an IP.

The read channel will read from PS DRAM, and write to a stream. The Write channel will read from a stream, and
write back to PS DRAM.

Note that the DMA expects any streaming IP connected to the DMA (write channel) to set the AXI TLAST signal
when the transaction is complete. If this is not set, the DMA will never complete the transaction. This is important
when using HLS to generate the IP - the TLAST signal must be set in the C code.

Examples

This example assumes the overlay contains two AXI Direct Memory Access IP, one with a read channel from DRAM,
and an AXI Master stream interface (for an output stream), and the other with a write channel to DRAM, and an AXI
Slave stream interface (for an input stream). The two DMAs are connected in a loopback configuration through an
AXI FIFO.

In the Python code, two DMA instances are created, one for sending data, and the other for receiving.

Two memory buffers, one for input, and the other for output are allocated.

import pynq.lib.dma
from pynq import Xlnk
import numpy as np

xlnk = Xlnk()

dma_send = ol.axi_dma_from_ps_to_pl
dma_recv = ol.axi_dma_from_pl_to_ps

input_buffer = xlnk.cma_array(shape=(5,), dtype=np.uint32)
output_buffer = xlnk.cma_array(shape=(5,), dtype=np.uint32)

Write some data to the array:

46 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

for i in range(5):
input_buffer[i] = i

Input buffer: [0 1 2 3 4]

Transfer the input_buffer to the send DMA, and read back from the recv DMA to the output buffer. The wait() method
ensures the DMA transactions have complete.

dma_send.sendchannel.transfer(input_buffer)
dma_recv.recvchannel.transfer(output_buffer)
dma_send.sendchannel.wait()
dma_recv.recvchannel.wait()

Output buffer: [0 1 2 3 4]

More information about the DMA module can be found in the pynq.lib.dma Module sections

2.5.6 PL and Bitstream classes

The PL is mainly an internal class used by the Overlay class. The PL class launches a PL server which manages the
loaded overlay. The PL server can stop multiple overlays from different applications from overwriting the currently
loaded overlay.

The overlay Tcl file is parsed by the PL class to generate the IP, clock, interrupts, and gpio dictionaries (lists of
information about IP, clocks and signals in the overlay).

The Bitstream class can be found in the pl.py source file, and can be used instead of the overlay class to download a bit-
stream file to the PL without requiring an overlay Tcl file. This can be used for for testing, but these attributes can also
be accessed through the Overlay class (which inherits from this class). Using the Overlay class is the recommended
way to access these attributes.

Examples

PL

PL.timestamp # Get the timestamp when the current overlay was loaded

PL.ip_dict # List IP in the overlay

PL.gpio_dict # List GPIO in the overlay

PL.interrupt_controllers # List interrupt controllers in the overlay

PL.interrupt_pins # List interrupt pins in the overlay

PL.hierarchy_dict # List the hierarchies in the overlay

Bitstream

from pynq import Bitstream

bit = Bitstream("base.bit") # No overlay Tcl file required

2.5. PYNQ Libraries 47

Python productivity for Zynq (Pynq) Documentation, Release 2.0

bit.download()

bit.bitfile_name

‘/opt/python3.6/lib/python3.6/site-packages/pynq/overlays/base/base.bit’

More information about the PL module can be found in the pynq.pl Module sections

2.5.7 Overlay

The Overlay class is used to load PYNQ overlays to the PL, and manage and control existing overlays. The class is
instantiated with the .bit file for an overlay. By default the overlay Tcl file will be parsed, and the bitstream will be
downloaded to the PL. This means that to use the overlay class, a .bit and .tcl must be provided for an overlay.

To instantiate the Overlay only without downloading the .bit file, pass the parameter download=False when instanti-
ating the Overlay class.

On downloading the bitstream, the clock settings provided in the overlay .tcl file will also be applied before the
bitstream is downloaded.

Examples

from pynq import Overlay

base = Overlay("base.bit") # bitstream implicitly downloaded to PL

The .bit file path can be provided as a relative, or absolute path. The Overlay class will also search the packages
directory for installed packages, and download an overlay found in this location. The .bit file is used to locate the
package.

base = Overlay("base.bit", download=False) # Overlay is instantiated, but bitstream
→˓is not downloaded to PL

base.download() # Explicitly download bitstream to PL

base.is_loaded() # Checks if a bitstream is loaded

base.reset() # Resets all the dictionaries kept int he overlay

base.load_ip_data(myIP, data) # Provides a function to write data to the memory space
→˓of an IP

data is assumed to be in binary format

The ip_dict contains a list of IP in the overlay, and can be used to determine the IP driver, physical address, version, if
GPIO, or interrupts are connected to the IP.

base.ip_dict

More information about the Overlay module can be found in the pynq.overlay Module sections

2.5.8 Audio

The Audio module provides methods to read audio from the input microphone, play audio to the output speaker, or
read and write audio files. The audio module talks to the audio IP subsystem in the Base Overlay to drive the Pulse

48 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Width Modulation (PWM) mono output, and another block to read the Pulse Density Modulated (PDM) input from
the microphone.

Examples

In the Base Overlay, a single Audio instance is available: audio. After the overlay is loaded this instance can be
accessed as follows:

from pynq.overlays.base import BaseOverlay
base = BaseOverlay("base.bit")
pAudio = base.audio

pAudio.load("/home/xilinx/pynq/lib/tests/pynq_welcome.pdm")
pAudio.play()

More information about the Audio module and the API for reading and writing audio interfaces, or loading and saving
audio files can be found in the pynq.lib.audio Module section.

For more examples see the “Welcome to Pynq Audio” notebook on the PYNQ-Z1 board at:

<Jupyter Home>/base/audio/audio_playback.ipynb

2.5.9 Video

The Video subpackage contains a collection of drivers for reading from the HDMI-In port, writing to the HDMI-Out
port, transferring data, setting interrupts and manipulating video frames.

The Video hardware subsystem consists of a HDMI-In block, a HDMI-Out block, and a Video DMA. The HDMI-In
and HDMI-Out blocks also support color space conversions, e.g. from YCrCb to RGB and back, and changing the
number of channels in each pixel.

Video data can be captured from the HDMI-In, and streamed to DRAM using the Video DMA, or streamed from
DRAM to the HDMI-Out.

Block Diagram

2.5. PYNQ Libraries 49

Python productivity for Zynq (Pynq) Documentation, Release 2.0

HDMI-In

The Pixel Unpack and the Color Convert block allow conversion between different color spaces at runtime.

HDMI-Out

The HDMI-Out is similar to HDMI-In. It has a Pixel Pack block (instead of the Unpack block for HDMI-In) and a
Color Convert block.

Processing Options

There are 3 main ways that some processing could be carried out on a Video pipeline.

1. Read, write and process frames in Python on the PS

2. Modify the overlay to insert an IP into the video pipeline

3. Modify the overlay to connect an IP to an available interface in the overlay

Python Processing

Input and output frames are represented as numpy arrays frames are read from the HDMI input and written to the
HDMI output. The HDMI input will return the most recent complete frame received or block if necessary until the
frame is ready. The HDMI output will continue outputting the last frame written until a new frame is provided.

As frames are numpy arrays they can be directly used in other Python libraries including the Python OpenCV libraries.

Examples of using the video API with OpenCV can be found in the video notebooks.

50 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Processing video in the PS will be relatively slow. Where possible low level processing should be carried out in the
PL. The video subsystem supports basic color space and pixel type conversions in hardware before passing a frame to
the Python environment to improve performance of OpenCV and processing by other libraries.

Pipeline Processing

The HDMI signal blocks are AXI-stream. A custom AXI-stream IP with an input stream and output stream could be
inserted into the video pipeline, either on the HDMI-In side, or HDMI-Out side. However, usually IP to process the
video stream will assume a fixed color space/pixel format and this will determine where an IP should be connected in
the Video pipeline.

It is usually appropriate to insert the IP after the pixel_pack block on the HDMI-In block, or before the pixel_unpack
block on the HDMI-Out side. This gives flexibility to use the video subsystem color space conversion blocks before
and after the custom IP.

Batch Processing

An IP block can be added to an overlay and connected to an available interface. Usually a DMA would be used to
stream the input frame buffer to the IP, and send the processed data back to the output frame buffer in DRAM.

Note that the DRAM is likely to be a bottleneck for video processing. The Video data is written to DRAM, then read
from DRAM and send to the custom IP and is written back to DRAM, where it is read by the HDMI out.

For the PYNQ-Z1 which has a 16-bit DRAM, up to 1080p cwgraysc (8-bits per pixel) can be processed at ~60fps
alongside the framebuffer memory bandwidth, but this is very close to the total memory bandwidth of the system.

Examples

More information about the Video subpackage, its components, and its their APIs can be found in the pynq.lib.video
Module section.

For more examples, see the Video Notebooks folder on the Pynq-Z1 board in the following directory:

<Jupyter Home>/base/video

Initialization

Set up an instance of the HDMI-in, and HDMI-out.

from pynq import Overlay
from pynq.lib.video import *

base = Overlay('base.bit')
hdmi_in = base.video.hdmi_in
hdmi_out = base.video.hdmi_out

Configuration

The HDMI-in interface is enabled using the configure function which can optionally take a colorspace parameter.
If no colorspace is specified then 24-bit BGR is used by default. The HDMI-in mode can be used to configure the
HDMI-out block. This specifies the output color space and resolution.

2.5. PYNQ Libraries 51

Python productivity for Zynq (Pynq) Documentation, Release 2.0

hdmi_in.configure()
hdmi_out.configure(hdmi_in.mode)

Execution

Once the HDMI controllers have been configured, they can be started:

hdmi_in.start()
hdmi_out.start()

To connect a simple stream from HDMI-in to HDMI-out, the two streams can be tied together.

hdmi_in.tie(hdmi_out)

This takes the unmodified input stream and passes it directly to the output. While the input and output are tied frames
can still be read from the input but any call to hdmi_out.writeframe will end the tie.

frame = hdmi_in.readframe()
...
hdmi_out.writeframe(frame)

This would allow some processing to be carried out on the HDMI-in frame before writing it to the HDMI-out.

Color Space Conversion

The video subsystem supports general color space conversions so that frames in DRAM are in a format appropriate for
any subsequent processing. The default color space is BGR(24-bit) with RGB (24-bit), RGBA (32-bit), BGR (24-bit),
YCbCr (24-bit), and grayscale (8-bit) provided as built-in options.

The colorspace converter operates on each pixel independently using a 3x4 matrix to transform the pixels. The con-
verter is programmed with a list of twelve coefficients in the following order:

Channel in1 in2 in3 1
out1 c1 c2 c3 c10
out2 c4 c5 c6 c11
out3 c7 c8 c9 c12

Each coefficient should be a floating point number between -2 and +2.

The pixels to and from the HDMI frontends are in BGR order so a list of coefficients to convert from the input format
to RGB would be:

[0, 0, 1,
0, 1, 0,
1, 0, 0,
0, 0, 0]

reversing the order of the channels and not adding any bias.

The driver for the colorspace converters has a single property that contains the list of coefficients.

colorspace_in = base.video.hdmi_in.color_convert
colorspace_out = base.video.hdmi_out.color_convert

52 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

bgr2rgb = [0, 0, 1,
0, 1, 0,
1, 0, 0,
0, 0, 0]

colorspace_in.colorspace = bgr2rgb
colorspace_out.colorspace = bgr2rgb

Pixel Format

The default pixel format for the HDMI frontends is 24-bit - that is three 8-bit channels. This can be converted to 8, 16,
24 or 32 bits.

8-bit mode selects the first channel in the pixel (and drops the other two) 16-bit mode can either select the first two
channels or select the first and performs chroma resampling of the other two resulting in 4:2:2 formatted frames. 24-bit
mode is pass-through, and doesn’t change the format 32-bit mode pads the stream with additional 8-bits.

pixel_in = base.video.hdmi_in.pixel_pack
pixel_out = base.video.hdmi_out.pixel_unpack

pixel_in.bits_per_pixel = 8
pixel_out.bits_per_pixel = 16
pixel_out.resample = False

Video Pipeline

As the hdmi_in.readframe and hdmi_out.writeframe functions may potentially block if a complete frame
has not yet been read or written, _async versions of these functions also exist. One use for the asynchronous versions
is if frames are being transferred to a separate accelerator using a DMA engine. The DMA driver is also asyncio aware
so the computation can be written as two tasks. One to retrieve frames from the Video DMA and forward them to the
accelerator and a second task to bring frames back from the accelerator.

async def readframes():
while True:

frame = await hdmi_in.readframe_async()
dma.sendchannel.transfer(frame)
await dma.sendchannel.wait_async()
frame.freebuffer()

async def writeframes():
while True:

frame = hdmi_out.newframe()
dma.recvchannel.transfer(frame)
await dma.recvchannel.wait()
await hdmi_out.writeframe_async(frame)

2.5.10 Pmod

The Pmod subpackage is a collection of drivers for controlling peripherals attached to a Pmod port.

A Pmod port is an open 12-pin interface that is supported by a range of Pmod peripherals from Digilent and third party
manufacturers. Typical Pmod peripherals include sensors (voltage, light, temperature), communication interfaces
(Ethernet, serial, WiFi, Bluetooth), and input and output interfaces (buttons, switches, LEDs).

2.5. PYNQ Libraries 53

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Each Pmod connector has 12 pins arranged in 2 rows of 6 pins. Each row has 3.3V (VCC), ground (GND) and 4 data
pins. Using both rows gives 8 data pins in total.

Pmods come in different configurations depending on the number of data pins required. E.g. Full single row: 1x6
pins; full double row: 2x6 pins; and partially populated: 2x4 pins.

Pmods that use both rows (e.g. 2x4 pins, 2x6 pins), should usually be aligned to the left of the connector (to align with
VCC and GND).

Pmod peripherals with only a single row of pins can be connected to either the top row or the bottom row of a Pmod
port (again, aligned to VCC/GND). If you are using an existing driver/overlay, you will need to check which pins/rows
are supported for a given overlay, as not all options may be implemented. e.g. the Pmod ALS is currently only
supported on the top row of a Pmod port, not the bottom row.

All pins operate at 3.3V. Due to different pull-up/pull-down I/O requirements for different peripherals (e.g. IIC requires
pull-up, and SPI requires pull-down) the Pmod data pins have different IO standards.

Pins 0,1 and 4,5 are connected to pins with pull-down resistors. This can support the SPI interface, and most periph-
erals. Pins 2,3 and 6,7 are connected to pins with pull-up resistors. This can support the IIC interface.

Pmods already take this pull up/down convention into account in their pin layout, so no special attention is required
when using Pmods.

54 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Block Diagram

As indicated in the diagram, each Pmod PYNQ MicroBlaze has a PYNQ MicroBlaze Subsystem a configurable switch,
and the following AXI controllers:

• AXI I2C

– SCL Frequency 100 KHz

– Address Mode: 7 bits

• AXI SPI

– Master mode

– Transaction Width: 8

– SCK Frequency: 6.25 MHz

– FIFO Depth: 16

• AXI GPIO

– 8 Input/Output pins

• AXI Timer

– 32 bits

– 1 Generate Output

– 1 PWM Output

• AXI Interrupt controller

Manages the interrupts of peripherals in the MicroBlaze subsystem.

• Interrupt GPIO

– An additional AXI GPIO is used to signal interrupt requests to the PS

• Configurable Switch

– Allows routing of signals from dedicated peripherals to the external interface.

2.5. PYNQ Libraries 55

Python productivity for Zynq (Pynq) Documentation, Release 2.0

A list of drivers provided for Pmod peripherals can be found in the pynq.lib.pmod Package section.

Examples

In the Base Overlay, two Pmod instances are available: PMODA and PMODB. After the overlay is loaded theses
instances can be accessed as follows:

from pynq.overlays.base import BaseOverlay
from pynq.lib import Pmod_Timer

base = BaseOverlay("base.bit")

pt = Pmod_Timer(base.PMODA,0)
pt.stop()

More information about the Pmod subpackage, its components, and its API can be found in the pynq.lib.pmod Package
section.

For more examples, see the notebooks in the following directory on the PYNQ-Z1 board:

<Jupyter Dashboard>/base/pmod/

2.5.11 Arduino

The Arduino subpackage is a collection of drivers for controlling peripherals attached to a Arduino port.

An Arduino connector can be used to connect to Arduino compatible shields to PL pins. Remember that appropriate
controllers must be implemented in an overlay and connected to the corresponding pins before a shield can be used.
Arduino pins can also be used as general purpose pins to connect to custom hardware using wires.

56 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Block Diagram

An Arduino PYNQ MicroBlaze is available to control the Arduino interface, if provided. The Arduino PYNQ Mi-
croBlaze is similar to the Pmod PYNQ MicroBlaze, with more AXI Controllers.

2.5. PYNQ Libraries 57

Python productivity for Zynq (Pynq) Documentation, Release 2.0

As indicated in the diagram, the Arduino PYNQ MicroBlaze has a PYNQ MicroBlaze Subsystem, a configurable
switch, and the following AXI controllers:

• AXI I2C

– Frequency: 100KHz

– Address mode: 7 bit

• 2x AXI SPI

– Master mode

– Transaction Width: 8

– SCK Frequency: 6.25 MHz

– FIFO Depth: 16

Note: One SPI controller is connected to the Arduino interface dedicated SPI pins.

• 3x AXI GPIO

– 16 Input/Output pins total

• 6x AXI Timer

– 32 bits

– 1 Generate Output

– 1 PWM Output

• 1x AXI UART

– 9600 Baud

• 1x AXI XADC

– 1V peak-to-peak *

Warning: Analog inputs are supported via the internal Xilinx XADC. This supports inputs of 1V peak-to-peak.
Note that the Arduino interface supports 0-5V analog inputs which is not supported by Zynq without external
circuitry.

• AXI Interrupt controller

Manages the interrupts of peripherals in the MicroBlaze subsystem.

• Interrupt GPIO

An additional AXI GPIO is used to signal interrupt requests to the PS

• Configurable Switch

Allows routing of signals from dedicated peripherals to the external interface.

Peripheral Pins
UART D0, D1
I2C SCL, SDA
SPI* D10 - D13
PWM D3, D5, D6, D9, D10, D11
Timer D3 - D6 and D8 - D11

58 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Examples

In the Base Overlay, one Arduino PYNQ MicroBlaze instance is available. After the overlay is loaded this instance
can be accessed as follows:

from pynq.overlays.base import BaseOverlay
from pynq.lib.arduino import Arduino_LCD18

lcd = Arduino_LCD18(base.ARDUINO)
lcd.clear()

More information about the Arduino subpackage, its components, and its API can be found in the pynq.lib.arduino
Package section.

For more examples, see the notebooks in the following directory on the PYNQ-Z1 board:

<Jupyter Dashboard>/base/arduino/

2.5.12 Grove

The Grove peripherals can be accessed on Pmod pins using the PYNQ Grove Adapter and on Arduino pins using the
PYNQ Shield.

Block Diagram

There are two connectors available to connect Grove peripherals to the PYNQ-Z1 Board.

Pmod

The first option for connecting Grove peripherals uses the Pmod PYNQ MicroBlaze. Grove devices can be connected
to PYNQ-Z1 through the Pmod ports using the PYNQ Grove Adapter.

On the PYNQ Grove Adapter G1 and G2 map to Pmod pins [0,4] and [1,5], which are connected to pins with pull-down
resistors. Ports G1 and G2 support the SPI protocol, GPIO, and timer Grove peripherals, but not IIC peripherals. Ports
G3 and G4 map to pins [2,6], [3,7], which are connected to pins with pull-up resistors and support the IIC protocol
and GPIO peripherals.

2.5. PYNQ Libraries 59

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Peripheral Grove Port
I2C G3, G4
SPI G1, G2

Arduino

The second option for connecting Grove peripherals uses the Arduino PYNQ MicroBlaze.

Grove devices can be connected to PYNQ-Z1 through the Arduino ports using the PYNQ Shield.

On the PYNQ Shield there are 4 IIC Grove connectors (labeled I2C), 8 vertical Grove Connectors (labeled G1-G7 and
UART), and four horizontal Grove Connectors (labeled A1-A4). The SCL and SDA pins are connected to the SCL
and SDA pins on the Arduino header.

The following table maps Grove Ports to communcation protocols.

60 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Peripheral Grove Port
UART UART
I2C A4, I2C (x4)
SPI G7, G6
GPIO UART, G1 - G7

A list of drivers provided for Grove peripherals can be found in pynq.lib.pmod Package for the PYNQ Grove Adapter
and in pynq.lib.arduino Package for the PYNQ Shield.

Examples

In Base Overlay, two Pmod instances are available: PMODA and PMODB. After the overlay is loaded, the Grove
peripherals can be accessed as follows:

from pynq.overlays.base import BaseOverlay
from pynq.lib.pmod import Grove_Buzzer
from pynq.lib.pmod import PMOD_GROVE_G1

base = BaseOverlay("base.bit")

grove_buzzer = Grove_Buzzer(base.PMODB,PMOD_GROVE_G1)
grove_buzzer.play_melody()

More information about the Grove drivers in the Pmod subpackage, the supported peripherals, and APIs can be found
in pynq.lib.pmod Package.

For more examples using the PYNQ Grove Adapter, see the notebooks in the following directory on the PYNQ-Z1
board:

<Jupyter Dashboard>/base/pmod/

In Base Overlay, one Arduino PYNQ MicroBlaze instance is available. After the overlay is loaded, the Grove periph-
erals can be accessed as follows:

from pynq.overlays.base import BaseOverlay
from pynq.lib.arduino import Grove_LEDbar
from pynq.lib.arduino import ARDUINO_GROVE_G4

base = BaseOverlay("base.bit")

ledbar = Grove_LEDbar(base.ARDUINO,ARDUINO_GROVE_G4)
ledbar.reset()

More information about the Grove drivers in the Arduino subpackage, the supported peripherals, and APIs can be
found in pynq.lib.arduino Package.

For more examples using the PYNQ Shield, see the notebooks in the following directory on the PYNQ-Z1 board:

<Jupyter Dashboard>/base/arduino/

2.5.13 Logictools

The logictools subpackage contains drivers for the Trace Analyzer, and the three PYNQ hardware generators: Boolean
Generator, FSM Generator, and Pattern Generator.

2.5. PYNQ Libraries 61

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Block Diagram

States

The basic operation of the main hardware blocks in the logictools overlay is the same. A set of methods which is
common to all blocks is used to control basic operations, setup(), run(), step(), stop(), reset(). The
operation of these methods will be described later.

Each block may have additional unique methods to provide functionality specific to that block.

The state diagram for the blocks is shown below:

62 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Any one of these hardware blocks, or any combination can be configured and run synchronously following the state
diagram above.

RESET

This is the state a block will start in after the overlay is loaded. A block will remain in the reset state until it has been
configured using the setup() method. It will return to this state if reset() is called.

In the reset state, all IO accessible to the logictools overlay are disconnected from the main logictools hardware
blocks. This prevents the inadvertent driving of any external circuitry that is connected to the board. This is done by
configuring the interface switch to disconnect all IO from the internal hardware.

The Pattern Generator contains BRAM to store the pattern to be generated. The BRAM is configured with zeros in
this state.

Similarly, the FSM Generator configuration is stored in a BRAM which is also configured with zeros in this state.

READY

In this state, the generators / analyzer have been configured. The input and output pins that will be connected have been
specified, and reserved, but the interface switch has not bee configured to connect these pins to the internal hardware.

2.5. PYNQ Libraries 63

Python productivity for Zynq (Pynq) Documentation, Release 2.0

RUNNING

Once the generators are in the ready state, calling run() or step() will move them to the READY state. When moving
to this state, the interface switch is configured to connect external IO. The hardware block(s) will start operating in
this state.

Running will start the block running in single-shot mode by default. In this mode, the generator will run until enough
number of samples are captured by the trace analyzer, or the pattern has completed; then the generator and analyzer
both go back to the READY state.

Boolean Generator always runs in continuous mode as a special case.

In continuous mode, the Pattern Generator generates its pattern continuously, looping back to the start when it reaches
the end of the pattern. The FSM Generator will continue to run until it is stopped.

Methods

Each generator / analyzer has the following methods:

• setup() - configure the block and prepare Interface Switch configuration

• run() - connect IO and start the block running

• stop() - disconnect IO and stop the block running

• step() - run a single step for the pattern or FSM generator

• reset() - clear the block configuration

• trace() - enable/disable trace

setup()

Each block must be configured using the setup() method before it can be used. This defines a configuration for the
block, and the configuration for the Interface Switch to connect the external IO. Note that the configuration is defined,
but the IO are not connected during setup.

run()

The run() method will move a block to the RUNNING state and the block will start operating. The specified number
of samples will be captured by the Trace Analyzer.

step()

The step() method is similar to run(), but instead of running, all the generators are single stepped (advanced one
clock cycle) each time the step method is called.

When stepping the Pattern Generator, it will step until the end of the configured pattern. It will not loop back to the
beginning.

The FSM Generator can be single stepped until a enough samples are captured by the Trace Analyzer.

64 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

stop()

If a block is running, it must be stopped before re-running.

Once a block is stopped, its outputs are disconnected from the external IO, and will only be reconnected when the
block is set to run again.

trace()

Trace is enabled by default for each block. When trace is enabled, the Trace Analyzer will capture trace data for all
connected blocks. The trace() method can be used to enable/disable the Trace Analyzer for each block.

reset()

This method resets the generator to its initial state. This method needs to be called before changing the configuration
for a hardware block.

Boolean Generator

The Boolean Generator supports up to Boolean functions of up to five inputs on each output pin. AND, OR, NOT, and
XOR operators are supported.

Block Diagram

2.5. PYNQ Libraries 65

Python productivity for Zynq (Pynq) Documentation, Release 2.0

On the PYNQ-Z1 the 20 digital pins of the Arduino shield interface (D0 - D19) can be used as inputs or outputs.
The 4 pushbuttons (PB0 - PB3) can be used as additional inputs, and the 4 user LEDs (LD0 - LD3) can be used as
additional outputs. This gives a maximum of 24 inputs and outputs available to the Boolean Generator, supporting up
to 24 Boolean functions.

Boolean functions are specified, as strings.

For example the following specifies that the values of pushbuttons 1 and 0 are XORed to produce the value on LED0:

'LD0 = PB0 ^ PB1'

Combinatorial Boolean expressions can be defined in a Python list using the expressions & (AND), | (OR), ! (NOT),
^ (XOR).

The expression defines if a pin is used as an input or output.

Examples

The following list defines four combinatorial functions on pins D8-11, which are built using combinatorial functions
made up of inputs from pins D0-D3. Any pin assigned a value is an output, and any pin used as a parameter in the
expression is an input. If a pin is defined as an output, it cannot be used as an input.

from pynq.overlays.logictools import LogicToolsOverlay

logictools = LogicToolsOverlay('logictools.bit')
boolean_generator = logictools.boolean_generator

function_specs = ['D3 = D0 ^ D1 ^ D2']
function_specs.append('D6 = D4 & D5')

The function configurations can also be labelled:

function_specs = {'f1': 'D3 = D0 ^ D1 ^ D2',
'f2': 'D6 = D4 & D5'}

Once the expressions have been defined, they can be passed to the BooleanGenerator function.

boolean_generator.setup(function_specs)

boolean_generator.run()

To disconnect the IO pins, stop it.

boolean_generator.stop()

If users want to use a different configuration, before calling setup() again, users have to call reset(); this will
clear all the reservations on the currently used pins.

boolean_generator.reset()

More information about the Boolean Generator module and its API can be found in the pynq.lib.logictools Package
section.

For more examples see the Logictools Notebooks folder on the Pynq-Z1 board in the following directory:

<Jupyter Home>/logictools/

66 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Pattern Generator

The Pattern Generator allows arbitrary digital patterns to be streamed to IO. This can be used to test or control external
circuits or devices.

Block Diagram

The Pattern Generator supports up to 64K pattern words. Though the memory is 32-bits wide, only least significant
20 bits are used which are routed to the Arduino pins. A data word is generated once every rising edge of the sample
clock.

The sample clock is programmable. The minimum sample clock speed is 252 KHz, and the maximum speed is 10
MHz.

The Pattern Generator class is instantiated by importing it from the logictools sub-package.

Examples

from pynq.overlays.logictools import LogicToolsOverlay

logictools = LogicToolsOverlay('logictools.bit')

pattern_generator = logictools.pattern_generator

More information about the Pattern Generator module and its API can be found in the pynq.lib.logictools Package
section.

For more examples see the Logictools Notebooks folder on the Pynq-Z1 board in the following directory:

2.5. PYNQ Libraries 67

Python productivity for Zynq (Pynq) Documentation, Release 2.0

<Jupyter Home>/logictools/

FSM Generator

The Finite State Machine (FSM) Generator can generate a finite state machine in programmable hardware from a
Python description.

Block Diagram

The FSM generator has an internal Block Memory which implements the finite state machine. The 20 pins on the
Arduino shield header are available. The FSM must have a minimum of 1 input, allowing a maximum of 19 outputs.
The maximum number of inputs is 8. For example, based on the number of inputs, the following configurations are
available:

Inputs Max # States Max # Outputs
8 31 12
7 63 13
6 127 14
5 255 15
4 511 16

The Trace Analyzer is controlled by a MicroBlaze subsystem. It is connected to a DMA, also controlled by the
MicroBlaze subsystem which is used to load configuration information, including the Block Memory configuration to
implement the FSM.

68 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

The configuration for the FSM, Input pins, output pins, internal states, and state transitions, can be specified in a text
format.

Examples

The FSM specification is passed to the setup(). The run() method can then be used to start the FSM.

The FSM Generator can be used in a similar way to the other generators.

Two additional methods are available to show the FSM state diagram in a notebook, and to display the waveform from
the FSM.

show_state_diagram()
show_waveform()

Example of a state diagram:

2.5. PYNQ Libraries 69

Python productivity for Zynq (Pynq) Documentation, Release 2.0

More information about the FSM Generator module and its API can be found in the pynq.lib.logictools Package
section.

For more examples see the Logictools Notebooks folder on the Pynq-Z1 board in the following directory:

<Jupyter Home>/logictools/

Trace Analyzer

Traditional on-chip debug allows FPGA resources to be used to monitor internal or external signals in a design for
debug. The debug circuitry taps into signals in a design under test, and saves the signal data as the system is operating.
The debug data is saved to on-chip memory, and can be read out later for offline debug and analysis. One of the
limitations of traditional on-chip debug is that amount of local memory usually available on chip is relatively small.
This means only a limited amount of debug data can be captured (typically a few Kilobytes).

The on-chip debug concept has been extended to allow trace debug data to be saved to DDR memory. This allows
more debug data to be captured. The data can then be analyzed using Python.

The trace analyzer monitors the external PL Input/Output Blocks (IOBs) on the PMOD and Arduino interfaces. The

70 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

IOBs are tri-state. This means three internal signals are associated with each pin; an input (I), and output (O) and a
tri-state signal (T). The Tri-state signal controls whether the pin is being used as a input or output. The trace analyzer
is connected to all 3 signals for each IOP (PMOD and Arduino).

Block Diagram

This allows the trace analyzer to read the tri-state, determine if the IOB is in input, or output mode, and read the
appropriate trace data.

Examples

More information about the Trace Analyzer module and its API can be found in the pynq.lib.logictools Package section.

For more examples see the Logictools Notebooks folder on the Pynq-Z1 board in the following directory:

<Jupyter Home>/logictools/

2.5.14 PYNQ MicroBlaze Subsystem

The PYNQ MicroBlaze subsystem can be controlled by the PynqMicroblaze class. This allows loading of programs
from Python, controlling executing by triggering the processor reset signal, reading and writing to shared data memory,
and managing interrupts received from the subsystem.

Each PYNQ MicroBlaze subsystem is contained within an IO Processor (IOP). An IOP defines a set of communica-
tion and behavioral controllers that are controlled by Python. There are currently three IOPs provided with PYNQ:
Arduino, PMOD, and Logictools.

2.5. PYNQ Libraries 71

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Block Diagram

A PYNQ MicroBlaze subsystem consists of a MicroBlaze processor, AXI interconnect, Interrupt controller, an Inter-
rupt Requester, and External System Interface, and Block RAM and memory controllers.

The AXI interconnect connects the MicroBlaze to the interrupt controller, interrupt requester, and external interface.

• The Interrupt Controller is the interface for other communication or behavioral controllers connected to the
MicroBlaze Processor.

• The Interrupt Requester sends interrupt requests to the Zynq Processing System.

• The External Interface allows the MicroBlaze subsystem to communicate with other communication, behavioral
controllers, or DDR Memory.

• The Block RAM holds MicroBlaze Instructions and Data.

The Block RAM is dual-ported: One port connected to the MicroBlaze Instruction and Data ports; The other port is
connected to the ARM® Cortex®-A9 processor for communication.

If the External Interface is connected to DDR Memory, DDR can be used to transfer large data segments between the
PS (Python) and the Subsystem.

Examples

In the Base Overlay, three IOP instances with PYNQ Microblaze Subsystems are available: iop1 (PMODA), iop2
(PMODB), and iop3 (Arduino). After the overlay is loaded these can be accessed as follows:

from pynq.overlays.base import BaseOverlay
from pynq.lib import PynqMicroblaze

base = BaseOverlay('base.bit')

mb = PynqMicroblaze(base.iop1.mb_info,
"/home/xilinx/pynq/lib/pmod/pmod_timer.bin")

mb.reset()

More information about the PynqMicroblaze class, and its API can be found in the
pynq.lib.pynqmicroblaze.pynqmicroblaze Module section.

72 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Pmod, Arduino, and Grove classes are subclasses of the PynqMicroBlaze class, and further example notebooks can be
found in those sections.

Creating a New PYNQ Microblaze

Any hierarchy that contains a Microblaze and meets the above requirements of having AXI-accessible code memory,
a PS interrupt line and a reset line can be used in PYNQ. However in order to use your Microblaze with the IPython
magic you must provide a board support package (BSP). BSPs are generated from Xilinx SDK and contain all of the
drivers and configuration data for the peripherals attached to the Microblaze.

PYNQ provides a TCL script to generate the BSP from the hardware description file which can be found in the
boards/sw_repo directory of the repository, along with the drivers needed for Python/C communication and the
pynqmb hardware abstraction library. Creating and using the BSP requires the following steps:

1. Export Hardware from Vivado to generate the HDF file

2. In the boards/sw_repo directory run make HDF=$HDF_FILE. If no HDF is provided then the Base Over-
lay BSPs will be generated.

3. Copy the generated BSP on to the board and ensure it is name bsp_${hierarchy} where ${hierarchy}
is the name of the Microblaze hierarchy in your design. If you have multiple Microblazes it can all be a prefix
common to all hierarchies.

4. Call add_bsp(BSP_DIR) in Python. This can be done as part of initialisation of your overlay.

These steps will integrate the BSP into the PYNQ runtime and allow the IPython %%microblaze magic to be used
with the new Microblaze subsystem.

If you wish to reuse an existing subsystem, as long as it is named in accordance with the Base Overlay - e.g.
iop_pmod* or iop_arduino* then the correct BSP will be used automatically.

2.5.15 PYNQ Microblaze RPC

The PYNQ Microblaze infrastructure is built on top of a remote procedure call (RPC) layer which is responsible for
forwarding function calls from the Python environment to the Microblaze and handling all data transfer.

Supported Function Signatures

The RPC layer supports a subset of the C programming language for interface functions, although any functions may
be used internally within the Microblaze program. Any function which does not conform to these requirements will
be ignored. The limitations are:

1. No struct or union for either parameters or return types.

2. No returning of pointer types

3. No pointers to pointers

Data Transfer

All return values are passed back to Python through copying. The transfer of function arguments depends on the type
used. For a given non-void primitive the following semantics:

• Non-pointer types are copied from PYNQ to the microblaze

• Const pointer types are copied from Python to the Microblaze

2.5. PYNQ Libraries 73

Python productivity for Zynq (Pynq) Documentation, Release 2.0

• Non-const pointer types are copied from Python to the Microblaze and then copied back after completion of the
function.

The timeline of the execution of the function can be seen below:

The Python struct module is used to convert the Python type passed to the function into the appropriately sized
integer or floating point value for the Microblaze. Out of range values will result in an exception being raised and the
Microblaze function not running. Arrays of types are treated similarly with the struct module used to perform the
conversion from an array of Python types to the C array. For non-const arrays, the array is updated in place so that the
return values are available to the caller. The only exception to these conversion rules are char and const char
pointers which are optimised for Python bytearray and bytes types. Note that calling a function with a non-const
char* argument with a bytes object will result in an error because bytes objects are read-only. This will caught
prior to the Microblaze function being called.

Long-running Functions

For non-void return functions, the Python functions are synchronous and will wait for the C function to finish prior
to returning to the caller. For functions that return void then the function is called asynchronously and the Python
function will return immediately. This entails long-running, independent functions to run on the Microblaze without
blocking the Python thread. While the function is running, no other functions can be called unless the long-running
process frequently calls yield (from yield.h) to allow the RPC runtime to service requests. Please note - there
is no multi-threading available inside the Microblaze so attempting to run two long-running processes simultaneously
will result in only one executing regardless of the use of yield.

Typedefs

The RPC engine fully supports typedefs and provides an additional mechanism to allow for C functions to appear more
like Python classes. The RPC layer recognises the idiom where the name of a typedef is used as the prefix for a set of
function names. Taking an example from the PYNQ Microblaze library, the i2c typedef has corresponding functions
i2c_read and i2c_write which take an i2c type as the first parameter. With this idiom the RPC creates a new
class called i2c which has read and write methods. Any C functions returning an i2c typedef now return an
instance of this class. For this conversion to be done, the following three properties must hold:

1. The typedef is of a primitive type

2. There is at least one function returning the typedef

3. There is at least one function named according to the pattern

2.5.16 PYNQ Microblaze Library

The PYNQ Microblaze library is the primary way of interacting with Microblaze subsystems. It consists of a set of
wrapper drivers for I/O controllers and is optimised for the situation where these are connected to a PYNQ I/O switch.

This document describes all of the C functions and types provided by the API - see the Python/C interoperability guide
for more details on how this API translates into Python.

General Principles

This library provides GPIO, I2C, SPI, PWM/Timer and UART functionality. All of these libraries follow the same
design. Each defines a type which represents a handle to the device. *_open functions are used in situations where
there is an I/O switch in the design and takes a set of pins to connect the device to. The number of pins depends on the
protocol. *_open_device opens a specific device and can be passed either the base address of the controller or the
index as defined by the BSP. *_close is used to release a handle.

74 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

GPIO Devices

GPIO devices allow for one or multiple pins to be read and written directly. All of these functions are in gpio.h

gpio typedef

A handle to one or more pins which can be set simultaneously.

gpio gpio_open(int pin)

Returns a new handle to a GPIO device for a specific pin on the I/O switch. This function can only be called if there
is an I/O switch in the design.

gpio gpio_open_device(unsigned int device)

Returns a handle to an AXI GPIO controller based either on the base address or device index. The handle will allow
for all pins on channel 1 to be set simultaneously.

gpio gpio_configure(gpio parent, int low, int hi, int channel)

Returns a new handle tied to the specified pins of the controller. This function does not change the configuration of
the parent handle.

void gpio_set_direction(gpio device, int direction)

Sets the direction of all pins tied to the specified handle. The direction can either be GPIO_IN or GPIO_OUT.

void gpio_write(gpio device, unsigned int value)

Sets the value of the output pins represented by the handle. If the handle represents multiple pins then the least
significant bit refers to the lowest index pin. Writing to pins configured as input has no effect.

unsigned int gpio_read(gpio device)

Reads the value of input pins represented by the handle, If the handle represents multiple pins then the least significant
bit refers to the lowest index pin. Read from pins configured as output results in 0 being returned.

void gpio_close(gpio_device)

Returns the specified pins to high-impedance output and closes the device.

I2C Devices

The I2C driver is designed for master operation only and provides interfaces to read and write from a slave device. All
of these functions are in i2c.h.

2.5. PYNQ Libraries 75

Python productivity for Zynq (Pynq) Documentation, Release 2.0

i2c type

Represents an I2C master. It is possible for multiple handles to reference the same master device.

i2c i2c_open(int sda, int scl)

Open an I2C device attached to an I/O switch configured to use the specified pins. Calling this function will disconnect
any previously assigned pins and return them to a high-impedance state.

i2c i2c_open_device(unsigned int device)

Open an I2C master by base address or ID

void i2c_read(i2c dev_id, unsigned int slave_address, unsigned char* buffer,
unsigned int length)

Issue a read command to the specified slave. buffer is an array allocated by the caller of at least length length.

void i2c_write(i2c dev_id, unsigned int slave_address, unsigned char* buffer,
unsigned int length)

Issue a write command to the specified slave.

void i2c_close(i2c dev_id)

Close the I2C device.

SPI Devices

SPI operates on a synchronous transfer of data so rather than read and write, only a transfer function is provided.
These functions are all provided by spi.h.

spi type

Handle to a SPI master.

spi spi_open(unsigned int spiclk, unsigned int miso, unsigned int mosi,
unsigned int ss)

Opens a SPI master on the specified pins. If a pin is not needed for a device, -1 can be passed in to leave it unconnected.

spi spi_open_device(unsigned int device)

Opens a SPI master by base address or device ID.

76 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

spi spi_configure(spi dev_id, unsigned int clk_phase, unsigned int
clk_polarity)

Configures the SPI master with the specified clock phase and polarity. These settings are global to all handles to a SPI
master.

‘void spi_transfer(spi dev_id, const char* write_data, char* read_data, unsigned int length);

Transfer bytes to and from the SPI slave. Both write_data and write_data should be allocated by the caller
and NULL. Buffers should be at least of length length.

void spi_close(spi dev_id)

Closes a SPI master

Timer Devices

Timer devices serve two purposes. They can either be used to output PWM signals or as program timers for inserting
accurate delays. It is not possible to use these functions simultaneously and attempting to delay while PWM is in
operation will result in undefined behavior. All of these functions are in timer.h.

timer type

Handle to an AXI timer

timer timer_open(unsigned int pin)

Open an AXI timer attached to the specified pin

timer timer_open_device(unsigned int device)

Open an AXI timer by address or device ID

void timer_delay(timer dev_id, unsigned int cycles)

Delay the program by a specified number of cycles

void timer_pwm_generate(timer dev_id, unsigned int period, unsigned int pulse)

Generate a PWM signal using the specified timer

void timer_pwm_stop(timer dev_id)

Stop the PWM output

2.5. PYNQ Libraries 77

Python productivity for Zynq (Pynq) Documentation, Release 2.0

void timer_close(timer dev_id)

Close the specified timer

void delay_us(unsigned int us)

Delay the program by a number of microseconds using the default delay timer (timer index 0).

void delay_ms(unsigned int ms)

Delay the program by a number of milliseconds using the default delay timer (timer index 0).

UART Devices

This device driver controls a UART master.

uart type

Handle to a UART master device.

uart uart_open(unsigned int tx, unsigned int int rx)

Open a UART device on the specified pins

uart uart_open_device(unsigned int device)

Open a UART device by base address or index

void uart_read(uart dev_id, char* read_data, unsigned int length)

Read a fixed length of data from the UART

void uart_write(uart dev_id, char* write_data, unsigned int length)

Write a block of data to the UART.

void uart_close(uart dev_id)

Close the handle.

78 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

2.6 Overlay Design Methodology

As described in the PYNQ introduction, overlays are analogous to software libraries. A programmer can download
overlays into the Zynq® PL at runtime to provide functionality required by the software application.

An overlay is a class of Programmable Logic design. Programmable Logic designs are usually highly optimized for a
specific task. Overlays however, are designed to be configurable, and reusable for broad set of applications. A PYNQ
overlay will have a Python interface, allowing a software programmer to use it like any other Python package.

A software programmer can use an overlay, but will not usually create overlay, as this usually requires a high degree
of hardware design expertise.

There are a number of components required in the process of creating an overlay:

• Board Settings

• PS-PL Interface

• MicroBlaze Soft Processors

• Python/C Integration

• Python AsyncIO

• Python Overlay API

• Python Packaging

This section will give an overview of the process of creating an overlay and integrating it into PYNQ, but will not cover
the hardware design process in detail. Hardware design will be familiar to Zynq, and FPGA hardware developers.

2.6.1 Overlay Design

An overlay consists of two main parts; the PL design (bitstream) and the project block diagram Tcl file. Overlay design
is a specialized task for hardware engineers. This section assumes the reader has some experience with digital design,
building Zynq systems, and with the Vivado design tools.

PL Design

The Xilinx® Vivado software is used to create a Zynq design. A bitstream or binary file (.bit file) will be generated
that can be used to program the Zynq PL.

A free WebPack version of Vivado is available to build overlays. https://www.xilinx.com/products/design-tools/
vivado/vivado-webpack.html

The hardware designer is encouraged to support programmability in the IP used in a PYNQ overlays. Once the IP
has been created, the PL design is carried out in the same way as any other Zynq design. IP in an overlay that can be
controlled by PYNQ will be memory mapped, connected to GPIO. IP may also have a master connection to the PL.
PYNQ provides Python libraries to interface to the PL design and which can be used to create their own drivers. The
Python API for an overlay will be and will be covered in the next sections.

Overlay Tcl file

The Tcl from the Vivado IP Integrator block design for the PL design is used by PYNQ to automatically identify the
Zynq system configuration, IP including versions, interrupts, resets, and other control signals. Based on this informa-
tion, some parts of the system configuration can be automatically modified from PYNQ, drivers can be automatically
assigned, features can be enabled or disabled, and signals can be connected to corresponding Python methods.

2.6. Overlay Design Methodology 79

https://www.xilinx.com/products/design-tools/vivado/vivado-webpack.html
https://www.xilinx.com/products/design-tools/vivado/vivado-webpack.html

Python productivity for Zynq (Pynq) Documentation, Release 2.0

The Tcl file must be generated and provided with the bitstream file as part of an overlay. The Tcl file can be generated
in Vivado by exporting the IP Integrator block diagram at the end of the overlay design process. The Tcl file should be
provided with a bitstream when downloading an overlay. The PYNQ PL class will automatically parse the Tcl.

A custom, or manually created Tcl file can be used to build a Vivado project, but Vivado should be used to generate
and export the Tcl file for the block diagram. This automatically generated Tcl should ensure that it can be parsed
correctly by the PYNQ.

To generate the Tcl for the Block Diagram from the Vivado GUI:

• Click File > Export > Block Design

Or, run the following in the Tcl console:

write_bd_tcl

The Tcl filename should match the .bit filename. For example, my_overlay.bit and my_overlay.tcl.

The Tcl is parsed when the overlay is instantiated and downloaded.

from pynq import Overlay
ol = Overlay("base.bit") # Tcl is parsed here

An error will be displayed if a Tcl is not available when attempting to download an overlay, or if the Tcl filename does
not match the .bit file name.

Programmability

An overlay should have post-bitstream programmability to allow customization of the system. A number of reusable
PYNQ IP blocks are available to support programmability. For example, a PYNQ MicroBlaze can be used on Pmod,
and Arduino interfaces. IP from the various overlays can be reused to provide run-time configurability.

Zynq PS Settings

A Vivado project for a Zynq design consists of two parts; the PL design, and the PS configuration settings.

The PYNQ image which is used to boot the board configures the Zynq PS at boot time. This will fix most of the PS
configuration, including setup of DRAM, and enabling of the Zynq PS peripherals, including SD card, Ethernet, USB
and UART which are used by PYNQ.

The PS configuration also includes settings for system clocks, including the clocks used in the PL. The PL clocks can
be programmed at runtime to match the requirements of the overlay. This is managed automatically by the PYNQ
Overlay class.

During the process of downloading a new overlay, the clock configuration will be parsed from the overlay’s Tcl file.
The new clock settings for the overlay will be applied automatically before the overlay is downloaded.

Existing Overlays

Existing overlays can be used as a starting point to create a new overlay. The base overlay can be found in the boards
directory in the PYNQ repository, and includes reference IP for peripherals on the board:

<PYNQ repository>/boards/Pynq-Z1/base

A makefile exists in each folder that can be used to rebuild the Vivado project and generate the bitstream and Tcl for
the overlay. (On windows, instead of using make, the Tcl file can be sourced from Vivado.)

The bitstream and Tcl for the overlay are available on the board, and also in the GitHub project repository:

80 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

<PYNQ repository>/boards/Pynq-Z1/base

2.6.2 Board Settings

For information on the board, see the Digilent PYNQ-Z1 webpage

Base overlay project

The source files for the base overlay can be found in the PYNQ GitHub. The project can be rebuilt using the make-
file/TCL available here:

<GitHub repository>/boards/Pynq-Z1/base

The base design can be used as a starting point to create a new design.

Vivado board files

Vivado board files contain the configuration for a board that is required when creating a new project in Vivado.

• Download the PYNQ-Z1 board files

Installing these files in Vivado, allows the board to be selected when creating a new project. This will configure the
Zynq PS settings for the PYNQ-Z1.

To install the board files, extract, and copy the board files folder to:

<Xilinx installation directory>\Vivado\<version>\data\boards

If Vivado is open, it must be restart to load in the new project files before a new project can be created.

Pynq-Z1 XDC constraints file

• Download the PYNQ-Z1 Master XDC constraints

2.6.3 PS/PL Interfaces

The Zynq has 9 AXI interfaces between the PS and the PL. On the PL side, there are 4x AXI Master HP (High
Performance) ports, 2x AXI GP (General Purpose) ports, 2x AXI Slave GP ports and 1x AXI Master ACP port. There
are also GPIO controllers in the PS that are connected to the PL.

2.6. Overlay Design Methodology 81

https://reference.digilentinc.com/reference/programmable-logic/pynq-z1/start
https://github.com/cathalmccabe/pynq-z1_board_files/raw/master/pynq-z1.zip
https://reference.digilentinc.com/_media/reference/programmable-logic/pynq-z1/pynq-z1_c.zip

Python productivity for Zynq (Pynq) Documentation, Release 2.0

There are four pynq classes that are used to manage data movement between the Zynq PS (including the PS DRAM)
and PL interfaces.

• GPIO - General Purpose Input/Output

• MMIO - Memory Mapped IO

• Xlnk - Memory allocation

• DMA - Direct Memory Access

The class used depends on the Zynq PS interface the IP is connected to, and the interface of the IP.

Python code running on PYNQ can access IP connected to an AXI Slave connected to a GP port. MMIO can be used
to do this.

IP connected to an AXI Master port is not under direct control of the PS. The AXI Master port allows the IP to access
DRAM directly. Before doing this, memory should be allocated for the IP to use. The Xlnk class can be used to do
this. For higher performance data transfer between PS DRAM and an IP, DMAs can be used. PYNQ provides a DMA
class.

Each of these classes will be covered in more detail below.

When designing your own overlay, you need to consider the type of IP you need, and how it will connect to the PS.
You should then be able to determine which classes you need to use the IP.

82 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

GPIO

Two 32 bit GPIO controllers are available in the Zynq PS and are connected to the PL.

GPIO wires from the PS can be used as a very simple way to communicate between PS and PL. For example, GPIO
can be used as control signals for resets, or interrupts.

IP does not have to be mapped into the system memory map to be connected to GPIO.

More information about using PS GPIO can be found in the PS GPIO section.

MMIO

Any IP connected to the AXI Slave GP port will be mapped into the system memory map. MMIO can be used
read/write a memory mapped location. A MMIO read or write command is a single transaction to transfer 32 bits of
data to or from a memory location. As burst instructions are not supported, MMIO is most appropriate for reading and
writing small amounts of data to/from IP connect to the AXI Slave GP ports.

More information about using MMIO can be found in the MMIO section.

Xlnk

Memory must be allocated before it can be accessed by the IP. Xlnk allows memory buffers to be allocated. Xlnk
allocates a contiguous memory buffer which allows efficient transfers of data between PS and PL. Python or other
code running in Linux on the PS can access the memory buffer directly.

As PYNQ is running Linux, the buffer will exist in the Linux virtual memory. The Zynq AXI Slave ports allow an
AXI-master IP in an overlay to access physical memory. Xlnk can also provide the physical memory pointer to the
buffer which can be sent to an IP in the overlay. The physical address is stored in the physical_address property
of the allocated memory buffer instance. An IP in an overlay can then access the same buffer using the physical
address.

For example, a program running on a MicroBlaze processor in an overlay may need to write data to main memory so
that it could be read in Python. First, the memory can be allocated in Linux using Xlnk. Then the physical pointer is
sent to the MicroBlaze, and finally the MicroBlaze program and write data to the memory buffer using the pointer.

Xlnk is also used implicitly by the DMA class to allocate memory. If you are using the DMA it is useful to be aware
of Xlnk, but you will not need to use it directly.

More information about using Xlnk can be found in the Xlnk section.

DMA

The pynq DMA class supports the AXI Direct Memory Access IP. This allows data to be read from DRAM, and sent
to an AXI stream, or received from a stream and written to DRAM.

2.6. Overlay Design Methodology 83

https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf

Python productivity for Zynq (Pynq) Documentation, Release 2.0

The DMA has an AXI lite control interface, a Read channel (MM2S: Memory Map to Stream) consisting of an AXI
master to access PS DRAM, and an AXI Stream master to write to the IP, and a Write channel (S2MM: Stream to
Memory Map) with an AXI Master to access PS DRAM again and an AXI Stream slave to receive data from the IP.

The DMA supports simple mode. Scatter gather is not currently supported. The DMA class can allocate memory
buffers, and transfer data between the PS DRAM and an IP in the PL.

The DMA can be connected to the AXI Master HP ports allowing high performance data transfer between PS memory
and IP.

More information about using DMA can be found in the DMA section.

Interrupt

Finally there are dedicated interrupts which are linked with asyncio events in the python environment. To integrate into
the PYNQ framework Dedicated interrupts must be attached to an AXI Interrupt controller which is in turn attached to
the first interrupt line to the processing system. If more than 32 interrupts are required then AXI interrupt controllers
can be cascaded. This arrangement leaves the other interrupts free for IP not controlled by PYNQ directly such as
SDSoC accelerators.

The Interrupt class represents a single interrupt pin in the block design. It mimics a python Event by having
a single wait function that blocks until the interrupt is raised. The event will be cleared automatically when the
interrupt is cleared. To construct an event, pass in fully qualified path to the pin in the block diagram, e.g. 'my_ip/
interrupt' as the only argument.

An interrupt is only enabled for as long there is a thread or coroutine wating on the corresponding event. The recom-
mended approach to using interrupts is to wait in a loop, checking and clearing the interrupt registers in the IP before
resuming the wait. As an example, the AxiGPIO class uses this approach to wait for a desired value to be present.

class AxiGPIO(DefaultIP):
Rest of class definition

def wait_for_level(self, value):
while self.read() != value:

self._interrupt.wait()
Clear interrupt
self._mmio.write(IP_ISR, 0x1)

The implementation is built on top of asyncio, a newly added part of the python standard library. For more details on
asyncio, how it can be used with PYNQ see the PYNQ and Asyncio section.

84 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

2.6.4 PYNQ MicroBlaze Subsystem

The PYNQ MicroBlaze subsystem gives flexibility to support a wide range of hardware peripherals from Python. The
PYNQ MicroBlaze is intended as an offload processor, and can deal with the low level communication protocols and
data processing and provides data from a sensor that can be accessed from Python. The subsystem is deterministic,
and is suitable for real-time control.

MicroBlaze applications will typically be developed in C or C++, and will run bare-metal.

The following sections show how to develop applications for the MicroBlaze soft processors running inside an overlay.

Memory Architecture

Each PYNQ MicroBlaze has local memory (implemented in Xilinx BRAMs) and a connection to the PS DDR memory.

The PYNQ MicroBlaze instruction and data memory is implemented in a dual port Block RAM, with one port con-
nected to the PYNQ MicroBlaze, and the other to the ARM processor. This allows an executable binary file to be
written from the ARM to the PYNQ MicroBlaze instruction memory. The PYNQ MicroBlaze can also be reset by the
ARM, allowing the PYNQ MicroBlaze to start executing the new program.

The PYNQ MicroBlaze data memory, either in local memory, or in DDR memory, can be used as a mailbox for
communication and data exchanges between the ARM processor and the PYNQ MicroBlaze.

DDR memory is managed by the Linux kernel running on the Cortex-A9s. Therefore, the PYNQ MicroBlaze must
first be allocated memory regions to access DRAM. The PYNQ Xlnk() class is used to allocate memory in Linux.
It also provides the physical address of the memory. A PYNQ applications can send the physical address to a PYNQ
MicroBlaze, and the PYNQ MicroBlaze can then access the buffer.

DDR Memory

The PYNQ MicroBlazes are connected to the DDR memory via the General Purpose AXI slave port. This is a direct
connection, so it is only suitable for simple data transfers from the PYNQ MicroBlaze. The MicroBlaze can attempt
to read or write the DDR as quickly as possible in a loop, but there is no support for bursts, or streaming data.

PYNQ MicroBlaze Memory Map

The local PYNQ MicroBlaze memory is 64KB of shared data and instruction memory. Instruction memory for the
PYNQ MicroBlaze starts at address 0x0.

PYNQ and the application running on the PYNQ MicroBlaze can write to anywhere in the shared memory space. You
should be careful not to write to the instruction memory unintentionally as this will corrupt the running application.

When building the MicroBlaze project, the compiler will only ensure that allocated stack and heap of the application
fit into the BRAM and DDR if used. For communication between the ARM and the MicroBlaze, a part of the shared
memory space must also be reserved within the MicroBlaze address space.

There is no memory management in the PYNQ MicroBlaze. You must ensure the application, including stack and
heap, do not overflow into the defined data area. Remember that declaring a stack and heap size only allocates space to
the stack and heap. No boundary is created, so if sufficient space was not allocated, the stack and heap may overflow
and corrupt your application.

If you need to modify the stack and heap for an application, the linker script can be found in the
<project_directory>/src/ directory.

It is recommended to follow the same convention for data communication between the two processors via a MAIL-
BOX.

2.6. Overlay Design Methodology 85

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Instruction and data memory start 0x0
Instruction and data memory size 0xf000
Shared mailbox memory start 0xf000
Shared mailbox memory size 0x1000
Shared mailbox Command Address 0xfffc

These MAILBOX values for a PYNQ MicroBlaze application are defined here:

<PYNQ repository>/boards/sw_repo/pynqmb/src/circular_buffer.h

The corresponding Python constants are defined here:

<PYNQ repository>/pynq/lib/pmod/constants.py
<PYNQ repository>/pynq/lib/arduino/constants.py

The following example explains how Python could initiate a read from a peripheral connected to a PYNQ MicroBlaze.

1. Python writes a read command (e.g. 0x3) to the mailbox command address (0xfffc).

2. MicroBlaze application checks the command address, and reads and decodes the command.

3. MicroBlaze performs a read from the peripheral and places the data at the mailbox base address (0xf000).

4. MicroBlaze writes 0x0 to the mailbox command address (0xfffc) to confirm transaction is complete.

5. Python checks the command address (0xfffc), and sees that the MicroBlaze has written 0x0, indicating the read
is complete, and data is available.

6. Python reads the data in the mailbox base address (0xf000), completing the read.

Running Code on Different MicroBlazes

The MicroBlaze local BRAM memory is mapped into the MicroBlaze address space, and also to the ARM address
space. These address spaces are independent, so the local memory will be located at different addresses in each
memory space. Some example mappings are shown below to highlight the address translation between MicroBlaze
and ARM’s memory spaces.

MicroBlaze Base Address MicroBlaze Address Space ARM Equivalent Address Space
0x4000_0000 0x0000_0000 - 0x0000_ffff 0x4000_0000 - 0x4000_ffff
0x4200_0000 0x0000_0000 - 0x0000_ffff 0x4200_0000 - 0x4200_ffff
0x4400_0000 0x0000_0000 - 0x0000_ffff 0x4400_0000 - 0x4400_ffff

Note that each MicroBlaze has the same range for its address space. However, the location of the address space in the
ARM memory map is different for each PYNQ MicroBlaze. As the MicroBlaze address space is the same for each
PYNQ MicroBlaze, any binary compiled for one PYNQ MicroBlaze will work on another PYNQ MicroBlaze.

For example, suppose a PYNQ MicroBlaze exists at 0x4000_0000, and a second PYNQ MicroBlaze exists at
0x4200_0000. The same binary can run on the first PYNQ MicroBlaze by writing the binary from python to the
address space 0x4000_0000, and on the second PYNQ MicroBlaze by writing to 0x4200_0000.

Building Applications

There are a number of steps required before you can start writing your own software for a PYNQ MicroBlaze. This
document will describe the PYNQ MicroBlaze architecture, and how to set up and build the required software projects
to allow you to write your own application for the MicroBlaze inside an PYNQ MicroBlaze.

86 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Xilinx® SDK projects can be created manually using the SDK GUI, or software can be built using a Makefile flow.
Starting from image v2.1, users can also directly use the Jupyter notebook to program the PYNQ MicroBlaze; more
examples can be found in

<PYNQ dashboard>/base/microblaze

MicroBlaze Processors

As described in the previous section, a PYNQ MicroBlaze can be used as a flexible controller for different types of
external peripherals. The ARM® Cortex®-A9 is an application processor, which runs PYNQ and Jupyter notebook
on a Linux OS. This scenario is not well suited to real-time applications, which is a common requirement for an
embedded systems. In the base overlay there are three PYNQ MicroBlazes. As well as acting as a flexible controller,
a PYNQ MicroBlaze can be used as dedicated real-time controller.

PYNQ MicroBlazes can also be used standalone to offload some processing from the main processor. However, note
that the MicroBlaze processor inside a PYNQ MicroBlaze in the base overlay is running at 100 MHz, compared to the
Dual-Core ARM Cortex-A9 running at 650 MHz. The clock speed, and different processor architectures and features
should be taken into account when offloading pure application code. e.g. Vector processing on the ARM Cortex-A9
Neon processing unit will be much more efficient than running on the MicroBlaze. The MicroBlaze is most appropriate
for low-level, background, or real-time applications.

Software Requirements

Xilinx SDK (Software Development Kit) contains the MicroBlaze cross-compiler which can be used to build software
for the MicroBlaze inside a PYNQ MicroBlaze. SDK is available for free as part of the Xilinx Vivado WebPack.

The full source code for all supported PYNQ MicroBlaze peripherals is available from the project GitHub. PYNQ
ships with precompiled PYNQ MicroBlaze executables to support various peripherals (see PYNQ Libraries), so Xil-
inx software is only needed if you intend to modify existing code, or build your own PYNQ MicroBlaze applica-
tions/peripheral drivers.

PYNQ releases are built using:

Release version Vivado and SDK
v1.4 2015.4
v2.0 2016.1
v2.1 2017.4

It is recommended to use the same version to rebuild existing Vivado and SDK projects. If you only intend to build
software, you will only need to install SDK. The full Vivado and SDK installation is only required to modify or design
new overlays. You can use the Vivado HLx Web Install Client and select SDK and/or Vivado during the installation.

Compiling Projects

Software executables run on the MicroBlaze inside a PYNQ MicroBlaze. Code for the MicroBlaze can be written in
C or C++ and compiled using Xilinx SDK .

You can pull or clone the PYNQ repository, and all the driver source and project files can be found in <PYNQ
repository>\pynq\lib\<driver_group_name>\<project_directory>.

2.6. Overlay Design Methodology 87

http://www.xilinx.com/products/design-tools/embedded-software/sdk.html
https://www.xilinx.com/products/design-tools/vivado/vivado-webpack.html

Python productivity for Zynq (Pynq) Documentation, Release 2.0

SDK Application, Board Support Package, Hardware Platform

Each SDK application project requires a BSP project (Board Support Package), and a hardware platform project. The
application project will include the user code (C/C++). The Application project is linked to a BSP. The BSP (Board
Support Package) contains software libraries and drivers to support the underlying peripherals in the system.

Internally, the BSP is linked to a Hardware Platform. A Hardware Platform defines the peripherals in the PYNQ
MicroBlaze subsystem, and the memory map of the system. It is used by the BSP to build software libraries to support
the underlying hardware.

All Application projects can be compiled from the command line using makefiles, or imported into the SDK GUI.

You can also use existing projects as a starting point to create your own project.

Board Support Package

A Board Support Package (BSP) includes software libraries for peripherals in the system. For example, the SDK
projects for Pmod and Arduino peripherals require the following 2 BSPs:

BSP for the Arduino PYNQ MicroBlaze:

<PYNQ repository>/pynq/lib/arduino/bsp_iop_arduino/

BSP for the Pmod PYNQ MicroBlaze:

<PYNQ repository>/pynq/lib/pmod/bsp_iop_pmod

A BSP is specific to a processor subsystem. There can be many BSPs associated with an overlay, depending on the
types of processors available in the system.

An application for the Pmod PYNQ MicroBlaze will be linked to the Pmod PYNQ MicroBlaze BSP. As the two Pmod
PYNQ MicroBlazes are identical, an application written for one Pmod PYNQ MicroBlaze can run on the other Pmod
PYNQ MicroBlaze.

An Arduino application will be linked to the Arduino PYNQ MicroBlaze BSP.

Building the Projects

To build all the software projects, for example, you can run the corresponding makefile:

<PYNQ repository>/pynq/lib/arduino/makefile

<PYNQ repository>/pynq/lib/pmod/makefile

Application projects for peripherals that ship with PYNQ (e.g. Pmod and Arduino peripherals) can also be found in
the same location. Each project is contained in a separate folder.

The makefile compiles the application projects based on the BSP provided in the correct location.

The makefile requires SDK to be installed, and can be run from Windows, or Linux.

To run make from Windows, open SDK, and choose a temporary workspace (make sure this path is external to the
downloaded PYNQ repository). From the Xilinx Tools menu, select Launch Shell.

88 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

In Linux, open a terminal, and source the SDK tools.

From either the Windows Shell, or the Linux terminal, navigate to the sdk folder in your local copy of the PYNQ
repository:

The following example shows how to run make in <PYNQ repository>/pynq/lib/pmod/:

This will clean all the existing compiled binaries (bin files), and rebuild all the application projects.

2.6. Overlay Design Methodology 89

Python productivity for Zynq (Pynq) Documentation, Release 2.0

If you examine the makefile, you can the BIN_PMOD variable at the top of the makefile includes all the bin files
required by Pmod peripherals. If you want to add your own custom project to the build process, you need to add the
project name to the BIN_PMOD variable, and save the project in the same location as the other application projects.

Similarly, you have to following the same steps to build Arduino application projects.

In addition, individual projects can be built by navigating to the <project_directory>/Debug and running
make.

Binary Files

Compiling code produces an executable file (.elf) along with its binary format (.bin) to be downloaded to a PYNQ
MicroBlaze.

A .bin file can be generated from a .elf by running the following command from the SDK shell:

mb-objcopy -O binary <input_file>.elf <output_file>.bin

This is done automatically by the makefile for the existing application projects. The makefile will also copy all .bin
files into the <PYNQ repository>/pynq/lib/<driver_group_name>/ folder.

Creating Your Own

Using the makefile flow, you can use an existing project as a starting point for your own project.

90 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Copy and rename the project, and modify or replace the .c file in the src/ with your C code. The generated .bin file
will have the same base name as your C file.

For example, if your C code is my_peripheral.c, the generated .elf and .bin will be my_peripheral.elf and
my_peripheral.bin.

The naming convention recommended for peripheral applications is <pmod|arduino>_<peripheral>.

You will need to update references from the old project name to your new project name in
<project_directory>/Debug/makefile and <project_directory>/Debug/src/subdir.
mk.

If you want your project to build in the main makefile, you should also append the .bin name of your project to the
BIN_PMOD (or BIN_ARDUINO) variable at the top of the makefile.

If you are using the SDK GUI, you can import the Hardware Platform, BSP, and any application projects into your
SDK workspace.

The SDK GUI can be used to build and debug your code.

Writing Applications

The previous section described the software architecture and the software build process. This section will cover how
to write the PYNQ MicroBlaze application and also the corresponding Python interface.

The section assumes that the hardware platform and the BSPs have already been generated as detailed in the previous
section.

Header Files and Libraries

A library is provided for the PYNQ MicroBlaze which includes an API for local peripherals (IIC, SPI, Timer, Uart,
GPIO), the configurable switch, links to the peripheral addresses, and mappings for the mailbox used in the existing
PYNQ MicroBlaze peripheral applications provided with PYNQ. This library can be used to write custom PYNQ
MicroBlaze applications.

The PYNQ MicroBlaze can deploy a configurable IO switch. It allows the IO pins to be connected to various types of
controllers. The header files associated with the corresponding configurable switch can be found:

2.6. Overlay Design Methodology 91

Python productivity for Zynq (Pynq) Documentation, Release 2.0

<PYNQ repository>/boards/ip/io_switch_1.1/drivers/io_switch_v1_0/src

The PYNQ MicroBlaze has a dedicated library pynqmb. It wraps up low-level functions for ease of use. The header
files can be found

<PYNQ repository>/boards/sw_repo/pynqmb/src

To use these files in a PYNQ MicroBlaze application, include these header file(s) in the C program.

For example:

#include "xio_switch.h"
#include "circular_buffer.h"
#include "gpio.h"

Controlling the IO Switch

The IO switch needs to be configured by the PYNQ MicroBlaze application before any peripherals can be used. This
can be done statically from within the application, or the application can allow Python to write a switch configuration
to shared memory, which can be used to configure the switch.

For Pmod, there are 8 data pins that can be connected to GPIO, SPI, IIC, or Timer. For Arduino, there are 20 shared
data pins that can be connected to GPIO, UART, SPI, or Timer.

The following function, part of the provided IO switch driver (xio_switch.h), can be used to configure the switch from
a PYNQ MicroBlaze application.

void init_io_switch(void);
void set_pin(int pin_number, u8 pin_type);

The function init_io_switch() will just set all the pins to GPIO by default. Then users can call set_pin() to configure
each individual pin. The valid values for the parameter pin_type are defined as:

Pin Value
GPIO 0x00
UART0_TX 0x02
UART0_RX 0x03
SPICLK0 0x04
MISO0 0x05
MOSI0 0x06
SS0 0x07
SPICLK1 0x08
MISO1 0x09
MOSI1 0x0A
SS1 0x0B
SDA0 0x0C
SCL0 0x0D
SDA1 0x0E
SCL1 0x0F
PWM0 0x10
PWM1 0x11
PWM2 0x12
PWM3 0x13

Continued on next page

92 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Table 2.1 – continued from previous page
Pin Value
PWM4 0x14
PWM5 0x15
TIMER_G0 0x18
TIMER_G1 0x19
TIMER_G2 0x1A
TIMER_G3 0x1B
TIMER_G4 0x1C
TIMER_G5 0x1D
TIMER_G6 0x1E
TIMER_G7 0x1F
UART1_TX 0x22
UART1_RX 0x23
TIMER_IC0 0x38
TIMER_IC1 0x39
TIMER_IC2 0x3A
TIMER_IC3 0x3B
TIMER_IC4 0x3C
TIMER_IC5 0x3D
TIMER_IC6 0x3E
TIMER_IC7 0x3F

For example:

init_io_switch();
set_pin(0, SS0);
set_pin(1, MOSI0);
set_pin(3, SPICLK0);

This would connect a SPI interface:

• Pin 0: SS0

• Pin 1: MOSI0

• Pin 2: GPIO

• Pin 3: SPICLK0

• Pin 4: GPIO

• Pin 5: GPIO

• Pin 6: GPIO

• Pin 7: GPIO

IO Switch Modes and Pin Mapping

Note that the IO switch IP is a customizable IP can be configured by users inside a Vivado project (by double clicking
the IP icon of the IO switch). There are 4 pre-defined modes (pmod, dual pmod, arduino, raspberrypi) and 1 fully-
customizable mode (custom) for users to choose. In the base overlay, we have only used pmod and arduino as the IO
switch modes.

Switch mappings used for Pmod:

2.6. Overlay Design Methodology 93

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Pin GPIO UART PWM Timer SPI IIC Input-Capture
D0 GPIO UART0_RX/TX PWM0 TIMER_G0 SS0 TIMER_IC0
D1 GPIO UART0_RX/TX PWM0 TIMER_G0 MOSI0 TIMER_IC0
D2 GPIO UART0_RX/TX PWM0 TIMER_G0 MISO0 SCL0 TIMER_IC0
D3 GPIO UART0_RX/TX PWM0 TIMER_G0 SPICLK0 SDA0 TIMER_IC0
D4 GPIO UART0_RX/TX PWM0 TIMER_G0 SS0 TIMER_IC0
D5 GPIO UART0_RX/TX PWM0 TIMER_G0 MOSI0 TIMER_IC0
D6 GPIO UART0_RX/TX PWM0 TIMER_G0 MISO0 SCL0 TIMER_IC0
D7 GPIO UART0_RX/TX PWM0 TIMER_G0 SPICLK0 SDA0 TIMER_IC0

Note:

• PWM0, TIMER_G0, TIMER_IC0 can only be used once on any pin.

• UART0_TX/RX is supported by Pmod, but not implemented in the base overlay.

• SS0, MOSI0, MISO0, SPICLK0 can either be used on top-row (pins D0 - D3) or bottom-row (D4 - D7) but not
both.

• SCL0, SDA0 can either be used on to-row (pins D2 - D3) or bottom-row (D6 - D7) but not both.

Switch mappings used for Arduino:

Pin GPIO UART PWM Timer SPI IIC Input-Capture
D0 GPIO UART0_RX
D1 GPIO UART0_TX
D2 GPIO
D3 GPIO PWM0 TIMER_G0 TIMER_IC0
D4 GPIO TIMER_G6 TIMER_IC6
D5 GPIO PWM1 TIMER_G1 TIMER_IC1
D6 GPIO PWM2 TIMER_G2 TIMER_IC2
D7 GPIO
D8 GPIO TIMER_G7 TIMER_IC7
D9 GPIO PWM3 TIMER_G3 TIMER_IC3
D10 GPIO PWM4 TIMER_G4 SS0 TIMER_IC4
D11 GPIO PWM5 TIMER_G5 MOSI0 TIMER_IC5
D12 GPIO MISO0
D13 GPIO SPICLK0
D14/A0 GPIO
D15/A1 GPIO
D16/A2 GPIO
D17/A3 GPIO
D18/A4 GPIO
D19/A5 GPIO

Note:

• On Arduino, a dedicated pair of pins are connected to IIC (not going through the IO switch).

Switch mappings used for dual Pmod:

94 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Pin GPIO UART PWM Timer SPI IIC Input-Capture
D0 GPIO UART0_RX/TX PWM0 TIMER_G0 SS0 TIMER_IC0
D1 GPIO UART0_RX/TX PWM0 TIMER_G0 MOSI0 TIMER_IC0
D2 GPIO UART0_RX/TX PWM0 TIMER_G0 MISO0 SCL0 TIMER_IC0
D3 GPIO UART0_RX/TX PWM0 TIMER_G0 SPLCLK0 SDA0 TIMER_IC0
D4 GPIO UART0_RX/TX PWM0 TIMER_G0 SS0 TIMER_IC0
D5 GPIO UART0_RX/TX PWM0 TIMER_G0 MOSI0 TIMER_IC0
D6 GPIO UART0_RX/TX PWM0 TIMER_G0 MISO0 SCL0 TIMER_IC0
D7 GPIO UART0_RX/TX PWM0 TIMER_G0 SPICLK0 SDA0 TIMER_IC0

Pin GPIO UART PWM Timer SPI IIC Input-Capture
D0 GPIO UART0_RX/TX PWM0 TIMER_G1 SS1 TIMER_IC1
D1 GPIO UART0_RX/TX PWM0 TIMER_G1 MOSI1 TIMER_IC1
D2 GPIO UART0_RX/TX PWM0 TIMER_G1 MISO1 SCL1 TIMER_IC1
D3 GPIO UART0_RX/TX PWM0 TIMER_G1 SPICLK1 SDA1 TIMER_IC1
D4 GPIO UART0_RX/TX PWM0 TIMER_G1 SS1 TIMER_IC1
D5 GPIO UART0_RX/TX PWM0 TIMER_G1 MOSI1 TIMER_IC1
D6 GPIO UART0_RX/TX PWM0 TIMER_G1 MISO1 SCL1 TIMER_IC1
D7 GPIO UART0_RX/TX PWM0 TIMER_G1 SPICLK1 SDA1 TIMER_IC1

Note:

• PWM0, TIMER_G0, TIMER_IC0 can only be used once on any pin of D0 - D7.

• PWM0, TIMER_G1, TIMER_IC1 can only be used once on any pin of D8 - D15.

• SS0, MOSI0, MISO0, SPICLK0 can either be used on top-row (pins D0 - D3) or bottom-row (D4 - D7) but not
both.

• SS1, MOSI1, MISO1, SPICLK1 can either be used on top-row (pins D8 - D11) or bottom-row (D12 - D15) but
not both.

• SCL0, SDA0 can either be used on to-row (pins D2 - D3) or bottom-row (D6 - D7) but not both.

• SCL1, SDA1 can either be used on to-row (pins D10 - D11) or bottom-row (D14-D15) but not both.

Switch mappings used for Raspberrypi:

2.6. Overlay Design Methodology 95

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Pin GPIO UART PWM Timer SPI IIC Input-Capture
GPIO0 GPIO SDA0
GPIO1 GPIO SCL0
GPIO2 GPIO SDA1
GPIO3 GPIO SCL1
GPIO4 GPIO TIMER_ICx
GPIO5 GPIO TIMER_ICx
GPIO6 GPIO TIMER_ICx
GPIO7 GPIO SS0 TIMER_ICx
GPIO8 GPIO SS0 TIMER_ICx
GPIO9 GPIO MISO0 TIMER_ICx
GPIO10 GPIO MOSI0 TIMER_ICx
GPIO11 GPIO SPICLK0 TIMER_ICx
GPIO12 GPIO PWM0
GPIO13 GPIO PWM1
GPIO14 GPIO UART0_TX
GPIO15 GPIO UART0_RX
GPIO16 GPIO SS1
GPIO17 GPIO
GPIO18 GPIO
GPIO19 GPIO MISO1
GPIO20 GPIO MOSI1
GPIO21 GPIO SPICLK1
GPIO22 GPIO
GPIO23 GPIO
GPIO24 GPIO
GPIO25 GPIO

Note:

• x can be 0, 1, or 2 for TIMER_ICx.

• GCLK0, 1, and 2 are used which do not go through the switch, providing 50% duty cycle square wave genera-
tion.

• SPI0 can have up to two SS’s.

PYNQ MicroBlaze Example

MicroBlaze C Code

Taking Pmod ALS as an example PYNQ MicroBlaze driver (used to control the Pmod light sensor):

<PYNQ repository>/pynq/lib/pmod/pmod_als/src/pmod_als.c

First note that the pynqmb header files are included.

#include "spi.h"
#include "timer.h"
#include "circular_buffer.h"

Next, some constants for commands are defined. These values can be chosen properly. The corresponding Python
code will send the appropriate command values to control the PYNQ MicroBlaze application.

96 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

By convention, 0x0 is reserved for no command (idle, or acknowledged); then PYNQ MicroBlaze commands can be
any non-zero value.

// MAILBOX_WRITE_CMD
#define READ_SINGLE_VALUE 0x3
#define READ_AND_LOG 0x7
// Log constants
#define LOG_BASE_ADDRESS (MAILBOX_DATA_PTR(4))
#define LOG_ITEM_SIZE sizeof(u32)
#define LOG_CAPACITY (4000/LOG_ITEM_SIZE)

The ALS peripheral has as SPI interface. An SPI variable is defined and accessible to the remaining part of the
program.

spi device;

The user defined function get_sample() calls spi_transfer() to read data from the device.

u32 get_sample(){
/*
ALS data is 8-bit in the middle of 16-bit stream.
Two bytes need to be read, and data extracted.

*/
u8 raw_data[2];
spi_transfer(device, NULL, (char*)raw_data, 2);
return (((raw_data[1] & 0xf0) >> 4) + ((raw_data[0] & 0x0f) << 4));

}

In main() notice that no IO switch related functions are called; this is because those functions are performed under
the hood automatically by spi_open(). Also notice this application does not allow the switch configuration to be
modified from Python. This means that if you want to use this code with a different pin configuration, the C code must
be modified and recompiled.

int main(void)
{

int cmd;
u16 als_data;
u32 delay;

device = spi_open(3, 2, 1, 0);

// to initialize the device
get_sample();

Next, the while(1) loop continually checks the MAILBOX_CMD_ADDR for a non-zero command. Once a command
is received from Python, the command is decoded, and executed.

// Run application
while(1){

// wait and store valid command
while((MAILBOX_CMD_ADDR & 0x01)==0);
cmd = MAILBOX_CMD_ADDR;

Taking the first case, reading a single value; get_sample() is called and a value returned to the first position (0) of
the MAILBOX_DATA.

MAILBOX_CMD_ADDR is reset to zero to acknowledge to the ARM processor that the operation is complete and data

2.6. Overlay Design Methodology 97

Python productivity for Zynq (Pynq) Documentation, Release 2.0

is available in the mailbox.

Remaining code:

switch(cmd){

case READ_SINGLE_VALUE:
// write out reading, reset mailbox
MAILBOX_DATA(0) = get_sample();
MAILBOX_CMD_ADDR = 0x0;

break;

case READ_AND_LOG:
// initialize logging variables, reset cmd
cb_init(&circular_log, LOG_BASE_ADDRESS, LOG_CAPACITY, LOG_ITEM_SIZE);
delay = MAILBOX_DATA(1);
MAILBOX_CMD_ADDR = 0x0;

do{
als_data = get_sample();

cb_push_back(&circular_log, &als_data);
delay_ms(delay);

} while((MAILBOX_CMD_ADDR & 0x1)== 0);

break;

default:
// reset command
MAILBOX_CMD_ADDR = 0x0;
break;

}
}
return(0);

}

Python Code

With the PYNQ MicroBlaze Driver written, the Python class can be built to communicate with that PYNQ MicroBlaze.

<PYNQ repository>/pynq/lib/pmod/pmod_als.py

First the Pmod package is imported:

from . import Pmod

Then some other constants are defined:

PMOD_ALS_PROGRAM = "pmod_als.bin"
PMOD_ALS_LOG_START = MAILBOX_OFFSET+16
PMOD_ALS_LOG_END = PMOD_ALS_LOG_START+(1000*4)
RESET = 0x1
READ_SINGLE_VALUE = 0x3
READ_AND_LOG = 0x7

The MicroBlaze binary file for the PYNQ MicroBlaze is defined. This is the application executable, and will be loaded
into the PYNQ MicroBlaze instruction memory.

98 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

The ALS class and an initialization method are defined:

class Pmod_ALS(object):

def __init__(self, mb_info):

The initialization function for the module requires the MicroBlaze information. The __init__ is called when a
module is initialized. For example, from Python:

from pynq.lib.pmod import Pmod_ALS
from pynq.lib.pmod import PMODA
als = Pmod_ALS(PMODA)

This will create a Pmod_ALS instance, and load the MicroBlaze executable (PMOD_ALS_PROGRAM) into the instruc-
tion memory of the specified PYNQ MicroBlaze.

Since the MicroBlaze information, imported as Pmod constants, can also be extracted as an attribute of the overlay,
the following code also works:

from pynq.overlays.base import BaseOverlay
base = BaseOverlay("base.bit")
als = Pmod_ALS(base.PMODA)

In the initialization method, an instance of the Pmod class is created. This Pmod class controls the basic functionalities
of the MicroBlaze processor, including reading commands/data, and writting commands/data.

Internally, when the Pmod class is initialized, the run() call pulls the PYNQ MicroBlaze out of reset. After this, the
PYNQ MicroBlaze will be running the pmod_als.bin executable.

The read() method in the Pmod_ALS class will read an ALS sample and return that value to the caller. The
following steps demonstrate a Python to MicroBlaze read transaction specific to the Pmod_ALS class.

def read(self):

First, the command is written to the MicroBlaze shared memory. In this case the value READ_SINGLE_VALUE
represents a command value. This value is user defined in the Python code, and must match the value the C program
expects for the same function.

self.microblaze.write_blocking_command(READ_SINGLE_VALUE)

The command is blocking so that Python code will not proceed unless an acknowledgement has been received from
the MicroBlaze. Internally, after the PYNQ MicroBlaze has finished its task, it will write 0x0 to clear the command
area. The Python code checks this command area (in this case, the Python code constantly checks whether the 0x3
value is still present at the CMD_OFFSET).

Once the command is no longer 0x3 (the acknowledge has been received), the result is read from the data area of the
shared memory MAILBOX_OFFSET.

data = self.microblaze.read_mailbox(0)
return data

2.6.5 Python-C Integration

In some instances, the performance of Python classes to manage data transfer to an overlay may not be sufficient.
Usually this would be determined by implementing the driver in Python, and profiling to determine performance.

A higher performance library can be developed in a lower level language (e.g. C/C++) and optimized for an overlay.
The driver functions in the library can be called from Python using CFFI (C Foreign Function Interface).

2.6. Overlay Design Methodology 99

Python productivity for Zynq (Pynq) Documentation, Release 2.0

CFFI provides a simple way to interface with C code from Python. The CFFI package is preinstalled in the PYNQ
image. It supports four modes, API and ABI, each with “in-line” or “out-of-line compilation”. Inline ABI (Application
Binary Interface) compatibility mode allows dynamic loading and running of functions from executable modules, and
API mode allows building of C extension modules.

The following example taken from http://docs.python-guide.org/en/latest/scenarios/clibs/ shows the ABI inline mode,
calling the C function strlen() in from Python

C function prototype:

size_t strlen(const char*);

The C function prototype is passed to cdef(), and can be called using clib.

from cffi import FFI
ffi = FFI()
ffi.cdef("size_t strlen(const char*);")
clib = ffi.dlopen(None)
length = clib.strlen(b"String to be evaluated.")
print("{}".format(length))

C functions inside a shared library can be called from Python using the C Foreign Function Interface (CFFI). The
shared library can be compiled online using the CFFI from Python, or it can be compiled offline.

For more information on CFFI and shared libraries refer to:

http://cffi.readthedocs.io/en/latest/overview.html

http://www.tldp.org/HOWTO/Program-Library-HOWTO/shared-libraries.html

2.6.6 PYNQ and Asyncio

Interacting with hardware frequently involves waiting for accelerators to complete or stalling for data. Polling is an
inefficient way of waiting for data especially in a language like python which can only have one executing thread at
once.

The Python asyncio library manages multiple IO-bound tasks asynchronously, thereby avoiding any blocking caused
by waiting for responses from slower IO subsystems. Instead, the program can continue to execute other tasks that
are ready to run. When the previously-busy tasks are ready to resume, they will be executed in turn, and the cycle is
repeated.

In PYNQ real-time tasks are most often implemented using IP blocks in the Programmable Logic (PL). While such
tasks are executing in the PL they can raise interrupts on the PS CPUs at any time. Python’s asyncio library provides
an effective way to manage such events from asynchronous, IO-bound tasks.

The foundation of asyncio in Pynq is the Interrupts class in the pynq.interrupt Module which provides an asyncio-style
event that can be used for waiting for interrupts to be raised. The video Library, AXI GPIO and the PynqMicroblaze
drivers are build on top of the interrupt event to provide coroutines for any functions that might otherwise block.

Asyncio Fundamentals

The asyncio concurrency framework relies on coroutines, futures, tasks, and an event loop. We will introduce these
briefly before demonstrating their use with some introductory examples.

100 Chapter 2. Summary

http://docs.python-guide.org/en/latest/scenarios/clibs/
http://cffi.readthedocs.io/en/latest/overview.html
http://www.tldp.org/HOWTO/Program-Library-HOWTO/shared-libraries.html
https://docs.python.org/3/library/asyncio.html

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Coroutines

Coroutines are a new Python language construct. Coroutines introduce two new keywords await and async the
Python syntax. Coroutines are stateful functions whose execution can be paused. This means that they can yield
execution, while they wait on some task or event to complete. While suspended, coroutines maintain their state. They
are resumed once the outstanding activity is resolved. The await keyword determines the point in the coroutine where
it yields control and from which execution will resume.

Futures

A future is an object that acts as a proxy for a result that is initially unknown, usually because the action has not
yet completed. The futures concept is essential components in the internals of asyncio: futures encapsulate pending
operations so that they can be put in queues, their state of completion can be queried, and their results can be retrieved
when ready. They are meant to be instantiated exclusively by the concurrency framework, rather than directly by the
user.

Tasks

Coroutines do not execute directly. Instead, they are wrapped in tasks and registered with an asyncio event loop.
tasks are a subclass of futures.

Event Loop

The event loop is responsible for executing all ready tasks, polling the status of suspended tasks, and scheduling
outstanding tasks.

An event loop runs only one task at a time. It relies on cooperative scheduling. This means that no task interrupts
another, and each task yields control to the event loop when its execution is blocked. The result is single-threaded,
concurrent code in which the next cycle of the loop does not start until all the event handlers are executed sequentially.

A simple example is shown below. The example defines an coroutine named wake_up defined using the new async
def syntax. Function main creates an asyncio event loop that wraps the wake_up coroutine in a task called called
wake_up_task and registers the task with the event loop. Within the coroutine, the await statement marks the
point at which execution is initially suspended, and later resumed. The loop executes the following schedule:

1. Starts executing wake_up_task

2. Suspends wake_up_task and preserves its state

3. Runs asyncio.sleep runs for 1 to 5 seconds

4. Resumes wake_up_task from preserved state

5. Runs to completion using the preserved state

Finally the event loop is closed.

import asyncio
import random
import time

Coroutine
async def wake_up(delay):

'''A coroutine that will yield to asyncio.sleep() for a few seconds
and then resume, having preserved its state while suspended

2.6. Overlay Design Methodology 101

Python productivity for Zynq (Pynq) Documentation, Release 2.0

'''

start_time = time.time()
print(f'The time is: {time.strftime("%I:%M:%S")}')
print(f"Suspending coroutine 'wake_up' at 'await` statement\n")
await asyncio.sleep(delay)
print(f"Resuming coroutine 'wake_up' from 'await` statement")
end_time = time.time()
sleep_time = end_time - start_time
print(f"'wake-up' was suspended for precisely: {sleep_time} seconds")

Event loop
if __name__ == '__main__':

delay = random.randint(1,5)
my_event_loop = asyncio.get_event_loop()
try:

print("Creating task for coroutine 'wake_up'\n")
wake_up_task = my_event_loop.create_task(wake_up(delay))
my_event_loop.run_until_complete(wake_up_task)

except RuntimeError as err:
print (f'{err}' +

' - restart the Jupyter kernel to re-run the event loop')
finally:

my_event_loop.close()

A sample run of the code produces the following output:

Creating task for coroutine 'wake_up'

The time is: 11:09:28
Suspending coroutine 'wake_up' at 'await` statement

Resuming coroutine 'wake_up' from 'await` statement
'wake-up' was suspended for precisely: 3.0080409049987793 seconds

Any blocking call in event loop should be replaced with a coroutine. If you do not do this, when a blocking call is
reached, it will block the rest of the loop.

If you need blocking calls, they should be in separate threads. Compute workloads should also be in separate
threads/processes.

Instances of Asyncio in pynq

Asyncio can be used for managing a variety of potentially blocking operations in the overlay. A coroutine can be run
in an event loop and used to wait for an interrupt to fire. Other user functions can also be run in the event loop. If an
interrupt is triggered, any coroutines waiting on the corresponding event will be rescheduled. The responsiveness of
the interrupt coroutine will depend on how frequently the user code yields control in the loop.

GPIO Peripherals

User I/O peripherals can trigger interrupts when switches are toggled or buttons are pressed. Both the Button and
Switch classes have a function wait_for_level and a coroutine wait_for_level_async which block until
the corresponding button or switch has the specified value. This follows a convention throughout the pynq package
that that coroutines have an _async suffix.

102 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

As an example, consider an application where each LED will light up when the corresponding button is pressed. First
a coroutine specifying this functionality is defined:

base = pynq.overlays.base.BaseOverlay('base.bit')

async def button_to_led(number):
button = base.buttons[number]
led = base.leds[number]
while True:

await button.wait_for_level_async(1)
led.on()
await button.wait_for_level_async(0)
led.off()

Next add instances of the coroutine to the default event loop

tasks = [asyncio.ensure_future(button_to_led(i) for i in range(4)]

Finally, running the event loop will cause the coroutines to be active. This code runs the event loop until an exception
is thrown or the user interrupts the process.

asyncio.get_event_loop().run_forever()

PynqMicroblaze

The PynqMicroblaze class has an interrupt member variable which acts like an asyncio.Event with a wait() corou-
tine and a clear() method. This event is automatically wired to the correct interrupt pin or set to None if interrupts are
not available in the loaded overlay.

For example:

def __init__(self)
self.iop = pynq.lib.PynqMicroblaze(mb_info, IOP_EXECUTABLE)
if self.iop.interrupt is None:

warn("Interrupts not available in this Overlay")

There are two options for running functions from this new IOP wrapper class. The function can be called from an
external asyncio event loop (set up elsewhere), or the function can set up its own event loop and then call its asyncio
function from the event loop.

Async Functions

pynq offers both an asyncio coroutine and a blocking function call for all interrupt-driven functions. It is recommended
that this should be extended to any user-provided drivers. The blocking function can be used where there is no need to
work with asyncio, or as a convenience function to run the event loop until a specified condition.

The following code defines an asyncio coroutine. Notice the async and await keywords are the only additional
code needed to make this function an asyncio coroutine.

async def interrupt_handler_async(self, value):
if self.iop.interrupt is None:

raise RuntimeError('Interrupts not available in this Overlay')
while(1):

await self.iop.interrupt.wait() # Wait for interrupt

2.6. Overlay Design Methodology 103

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Do something when an interrupt is received
self.iop.interrupt.clear()

Event Loops

The following code wraps the asyncio coroutine, adding to the default event loop and running it until the coroutine
completes.

def interrupt_handler(self):

if self.iop.interrupt is None:
raise RuntimeError('Interrupts not available in this Overlay')

loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.ensure_future(

self.interrupt_handler_async()
))

Custom Interrupt Handling

The Interrupts class allows custom interrupt handlers to be built in Python.

This class abstracts away management of the AXI interrupt controller in the PL. It is not necessary to examine this code
in detail to use interrupts. The interrupt class takes the pin name of the interrupt line and offers a single wait_async
coroutine and the corresponding wait function that wraps it. The interrupt is only enabled in the hardware for as long
as a coroutine is waiting on an Interrupt object. The general pattern for using an Interrupt is as follows:

while condition:
await interrupt.wait()
Clear interrupt

This pattern avoids race conditions between the interrupt and the controller and ensures that an interrupt isn’t seen
multiple times.

Examples

For more examples, see the AsyncIO Buttons Notebook in the on the Pynq-Z1 in the following directory:

<Jupyter Dashboard>/base/board/

2.6.7 Python Overlay API

The Python API is the user interface for the overlay, exposing the programmable functionality in the design.

An API for a PYNQ overlay can consist of

• a simple Python wrapper that interfaces directly with the hardware IP blocks in the overlay

• a more substantial Python layer utilising other Python packages

• a Python library that interfaces to a lower level higher performance library (written in C/C++ for example) to
control the overlay

104 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

The API for an overlay will manage the transfer of data between the Python environment in the PS, and the overlay in
the PL. This may be the transfer of data directly from the PS to a peripheral or managing system memory to allow a
peripheral in the PL to read or write data from DRAM that can also be access by from the Python environment.

The Default API

When and Overlay is loaded using the pynq.Overlay function all of the IP and hierarchies in the overlay will have
drivers assigned to them and used to construct an object hierarchy. The IP can then be accessed via attributes on the
returned overlay class using the names of the IP and hierarchies in the block diagram.

If no driver has been specified for a type of IP then a DefaultIP will be instantiated offering read and write
functions to access the IP’s address space and named accessors to any interrupts or GPIO pins connected to the IP.
Hierarchies likewise will be instances of DefaultHierarchy offering access to any sub hierarchies or contained
IP. The top-level DefaultOverlay also acts just like any other IP.

Customising Drivers

While the default drivers are useful for getting started with new hardware in a design it is preferable to have a higher
level driver for end users to interact with. Each of DefaultIP, DefaultHierarchy and DefaultOverlay
can be subclassed and automatically bound to elements of the block diagram. New drivers will only be bound when
the overlay is reloaded.

Creating IP Drivers

All IP drivers should inherit from DefaultIP and include a bindto class attribute consisting of an array of strings.
Each string should be a type of IP that the driver should bind to. It is also strongly recommend to call super().
__init__ in the class’s constructor. The type of an IP can be found as the VLNV parameter in Vivado or from the
ip_dict of the overlay.

A template for an IP driver is as follows:

from pynq import DefaultIP

class MyIP(DefaultIP):
bindto = ['My IP Type']
def __init__(self, description):

super().__init__(description)

Creating Hierarchy Drivers

Hierarchy drivers should inherit from DefaultHierarchy and provide a static method checkhierarchy that
takes a description and returns True if the driver can bind to it. Any class that meets these two requirements will be
automatically added to a list of drivers tested against each hierarchy in a newly loaded overlay.

A template for a hierarchy driver is as follows:

from pynq import DefaultHierarchy

class MyHierarchy(DefaultHierarchy)
def __init__(self, description):

super().__init__(description)

@staticmethod

2.6. Overlay Design Methodology 105

Python productivity for Zynq (Pynq) Documentation, Release 2.0

def checkhierarchy(description):
return False

Creating Custom Overlay Classes

Finally the class changed from the DefaultOverlay to provide a more suitable high-level API or provide overlay-
specific initialisation. The overlay loader will look for a python file located alongside the bitstream and TCL files,
import it and then call the Overlay function.

A template for a custom overlay class is as follows:

from pynq import DefaultOverlay

class MyOverlay(DefaultOverlay):
def __init__(self, bitfile_name, download):

super().__init__(bitfile_name, download)

Other initialisation

Overlay = MyOverlay

Working with Physically Contiguous Memory

In many applications there is a need for large buffers to be transferred between the PS and PL either using DMA
engines or HLS IP with AXI master interfaces. In PYNQ the Xlnk class provides a mechanism to acquire numpy
arrays allocated as to be physically contiguous. First an instance of the xlnk class must be instantiated:

from pynq import Xlnk

xlnk = Xlnk()

Then the cma_array function can be used to allocate a physically contiguous numpy array. The function takes a
shape parameter and a dtype parameter in a similar way to other numpy construction functions.

import numpy as np

matrix1 = xlnk.cma_array(shape=(32,32), dtype=np.float32)

These arrays can either be passed directly to the DMA driver’s transfer function or they contain a
physical_address attribute which can be used by custom driver code.

When the array is no longer needed the underlying resources should be freed using the freebuffer function.
Alternatively a context manager can be used to ensure that the buffer is freed at the end of a scope.

with xlnk.cma_array(shape=(32,32), dtype=np.float32) as matrix2:
dma.sendchannel.transfer(matrix2)
dma.recvchannel.transfer(matrix1)
dma.sendchannel.wait()
dma.recvchannel.wait()
matrix1.freebuffer()

106 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

2.6.8 Python Packaging

PYNQ uses pip - the Python Packaging Authority’s recommended Python Package Installer to install and deliver
custom installations of PYNQ. pip’s flexible package delivery model has many useful features.

Packaging pynq for Distribution

Packaging the pynq Python project that pip can use is hugely beneficial, but requires carful thought and project archi-
tecture. There are many useful references that provide up-to-date information. For more information about how the
pynq library is packaged see the following links:

• Open Sourcing a Python Project The Right way

• How to Package Your Python Code

Delivering Non-Python Files

One extremely useful feature that pip provides is the ability to deliver non-python files. In the PYNQ project this
is useful for delivering FPGA binaries (.bit), overlay TCL source files (.tcl), PYNQ MicroBlaze binaries (.bin), and
Jupyter Notebooks (.ipynb), along side the pynq Python libaries.

From a Terminal on the PYNQ board, installing the pynq Python libraries is as simple as running:

sudo pip3.6 install --upgrade git+https://github.com/Xilinx/PYNQ.git

After pip finishes installation, the board must be rebooted.

An example of using pip’s setup.py file to provide non-python content is shown below:

from setuptools import setup, find_packages
import subprocess
import sys
import shutil
import new_overlay

setup(
name = "new_overlay",
version = new_overlay.__version__,
url = 'https://github.com/your_github/new_overlay',
license = 'All rights reserved.',
author = "Your Name",
author_email = "your@email.com",
packages = ['new_overlay'],
package_data = {
'' : ['*.bit','*.tcl','*.py','*.so'],
},
install_requires=[

'pynq',
],
dependency_links=['http://github.com/xilinx/PYNQ'],
description = "New custom overlay for PYNQ-Z1"

)

The package_data argument specifies which files will be installed as part of the package.

2.6. Overlay Design Methodology 107

https://jeffknupp.com/blog/2013/08/16/open-sourcing-a-python-project-the-right-way
https://python-packaging.readthedocs.io/en/latest/index.html

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Using pynq as a Dependency

One of the most useful features of pip is the abililty to depend on a project, instead of forking or modifying it.

When designing overlays, the best practice for re-using pynq code is to create a Python project as described above and
add pynq as a dependency. A good example of this is the BNN-PYNQ project.

The BNN-PYNQ project is an Overlay that depends on pynq but does not modify it. The developers list pynq as a
dependency in the pip configuration files, which installs pynq (if it isn’t already). After installation, the BNN-PYNQ
files are added to the installation: notebooks, overlays, and drivers are installed alongside pynq without modifying or
breaking the previous source code.

Needless to say, we highly recommend depending on pynq instead of forking and modifying pynq. An example of
depending on pynq is shown in the code segment from the previous section.

2.6.9 Overlay Tutorial

This notebook gives an overview of how the Overlay class has changed in PYNQ 2.0 and how to use it efficiently.

The redesigned Overlay class has three main design goals * Allow overlay users to find out what is inside an overlay
in a consistent manner * Provide a simple way for developers of new hardware designs to test new IP * Facilitate reuse
of IP between Overlays

This tutorial is primarily designed to demonstrate the final two points, walking through the process of interacting with
a new IP, developing a driver, and finally building a more complex system from multiple IP blocks. All of the code and
block diagrams can be found at [https://github.com/PeterOgden/overlay_tutorial]. For these examples to work copy
the contents of the overlays directory into the home directory on the PYNQ-Z1 board.

Developing a Single IP

For this first example we are going to use a simple design with a single IP contained in it. This IP was developed using
HLS and adds two 32-bit integers together. The full code for the accelerator is:

void add(int a, int b, int& c) {
#pragma HLS INTERFACE ap_ctrl_none port=return
#pragma HLS INTERFACE s_axilite port=a
#pragma HLS INTERFACE s_axilite port=b
#pragma HLS INTERFACE s_axilite port=c

c = a + b;
}

With a block diagram consisting solely of the HLS IP and required glue logic to connect it to the ZYNQ7 IP

To interact with the IP first we need to load the overlay containing the IP.

In [1]: from pynq import Overlay

overlay = Overlay('/home/xilinx/tutorial_1.bit')

Creating the overlay will automatically download it. We can now use a question mark to find out what is in the overlay.

In [2]: overlay?

All of the entries are accessible via attributes on the overlay class with the specified driver. Accessing the
scalar_add attribute of the will create a driver for the IP - as there is no driver currently known for the Add
IP core DefaultIP driver will be used so we can interact with IP core.

108 Chapter 2. Summary

https://github.com/Xilinx/BNN-PYNQ
https://github.com/PeterOgden/overlay_tutorial

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Fig. 2.1: Simple Block Diagram

In [3]: add_ip = overlay.scalar_add
add_ip?

Reading the documentation generated by HLS tells us that use the core we need to write the two arguments to offset
0x10 and 0x18 and read the result back from 0x20.

In [4]: add_ip.write(0x10, 4)
add_ip.write(0x18, 5)
add_ip.read(0x20)

Out[4]: 9

Creating a Driver

While the UnknownIP driver is useful for determining that the IP is working it is not the most user-friendly API
to expose to the eventual end-users of the overlay. Ideally we want to create an IP-specific driver exposing a sin-
gle add function to call the accelerator. Custom drivers are created by inheriting from UnknownIP and adding a
bindto class attribute consisting of the IP types the driver should bind to. The constructor of the class should take
a single description parameter and pass it through to the super class __init__. The description is a dictionary
containing the address map and any interrupts and GPIO pins connected to the IP.

In [5]: from pynq import DefaultIP

class AddDriver(DefaultIP):
def __init__(self, description):

super().__init__(description=description)

bindto = ['xilinx.com:hls:add:1.0']

def add(self, a, b):
self.write(0x10, a)
self.write(0x18, b)
return self.read(0x20)

Now if we reload the overlay and query the help again we can see that our new driver is bound to the IP.

In [6]: overlay = Overlay('/home/xilinx/tutorial_1.bit')
overlay?

2.6. Overlay Design Methodology 109

Python productivity for Zynq (Pynq) Documentation, Release 2.0

And we can access the same way as before except now our custom driver with an add function is created instead of
DefaultIP

In [7]: overlay.scalar_add.add(15,20)

Out[7]: 35

Reusing IP

Suppose we or someone else develops a new overlay and wants to reuse the existing IP. As long as they import the
python file containing the driver class the drivers will be automatically created. As an example consider the next design
which, among other things includes a renamed version of the scalar_add IP.

Fig. 2.2: Second Block Diagram

Using the question mark on the new overlay shows that the driver is still bound.

In [8]: overlay = Overlay('/home/xilinx/tutorial_2.bit')
overlay?

IP Hierarchies

The block diagram above also contains a hierarchy looking like this:

Containing a custom IP for multiple a stream of numbers by a constant and a DMA engine for transferring the data. As
streams are involved and we need correctly handle TLAST for the DMA engine the HLS code is a little more complex
with additional pragmas and types but the complete code is still relatively short.

typedef ap_axiu<32,1,1,1> stream_type;

void mult_constant(stream_type* in_data, stream_type* out_data, ap_int<32> constant) {
#pragma HLS INTERFACE s_axilite register port=constant
#pragma HLS INTERFACE ap_ctrl_none port=return
#pragma HLS INTERFACE axis port=in_data
#pragma HLS INTERFACE axis port=out_data

out_data->data = in_data->data * constant;
out_data->dest = in_data->dest;
out_data->id = in_data->id;
out_data->keep = in_data->keep;
out_data->last = in_data->last;
out_data->strb = in_data->strb;
out_data->user = in_data->user;

110 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Fig. 2.3: Hierarchy

}

Looking at the HLS generated documentation we again discover that to set the constant we need to set the register at
offset 0x10 so we can write a simple driver for this purpose

In [9]: class ConstantMultiplyDriver(DefaultIP):
def __init__(self, description):

super().__init__(description=description)

bindto = ['Xilinx:hls:mult_constant:1.0']

@property
def constant(self):

return self.read(0x10)

@constant.setter
def constant(self, value):

self.write(0x10, value)

The DMA engine driver is already included inside the PYNQ driver so nothing special is needed for that other than
ensuring the module is imported. Reloading the overlay will make sure that our newly written driver is available for
use.

In [10]: import pynq.lib.dma

overlay = Overlay('/home/xilinx/tutorial_2.bit')

dma = overlay.const_multiply.multiply_dma
multiply = overlay.const_multiply.multiply

The DMA driver transfers numpy arrays allocated using the xlnk driver. Lets test the system by multiplying 5
numbers by 3.

In [11]: from pynq import Xlnk
import numpy as np

xlnk = Xlnk()
in_buffer = xlnk.cma_array(shape=(5,), dtype=np.uint32)

2.6. Overlay Design Methodology 111

Python productivity for Zynq (Pynq) Documentation, Release 2.0

out_buffer = xlnk.cma_array(shape=(5,), dtype=np.uint32)

for i in range(5):
in_buffer[i] = i

multiply.constant = 3
dma.sendchannel.transfer(in_buffer)
dma.recvchannel.transfer(out_buffer)
dma.sendchannel.wait()
dma.recvchannel.wait()

out_buffer

Out[11]: ContiguousArray([0, 3, 6, 9, 12], dtype=uint32)

While this is one way to use the IP, it still isn’t exactly user-friendly. It would be preferable to treat the entire hierarchy
as a single entity and write a driver that hides the implementation details. The overlay class allows for drivers to be
written against hierarchies as well as IP but the details are slightly different.

Hierarchy drivers are subclasses of pynq.DefaultHierarchy and, similar to DefaultIP have a constructor
that takes a description of hierarchy. To determine whether the driver should bind to a particular hierarchy the class
should also contain a static checkhierarchy method which takes the description of a hierarchy and returns True
if the driver should be bound or False if not. Similar to DefaultIP, any classes that meet the requirements of
subclasses DefaultHierarchy and have a checkhierarchy method will automatically be registered.

For our constant multiply hierarchy this would look something like:

In [12]: from pynq import DefaultHierarchy

class StreamMultiplyDriver(DefaultHierarchy):
def __init__(self, description):

super().__init__(description)

def stream_multiply(self, stream, constant):
self.multiply.constant = constant
with xlnk.cma_array(shape=(len(stream),), \

dtype=np.uint32) as in_buffer,\
xlnk.cma_array(shape=(len(stream),), \

dtype=np.uint32) as out_buffer:
for i, v, in enumerate(stream):

in_buffer[i] = v
self.multiply_dma.sendchannel.transfer(in_buffer)
self.multiply_dma.recvchannel.transfer(out_buffer)
self.multiply_dma.sendchannel.wait()
self.multiply_dma.recvchannel.wait()
result = out_buffer.copy()

return result

@staticmethod
def checkhierarchy(description):

if 'multiply_dma' in description['ip'] \
and 'multiply' in description['ip']:
return True

return False

We can now reload the overlay and ensure the higher-level driver is loaded

In [13]: overlay = Overlay('/home/xilinx/tutorial_2.bit')
overlay?

and use it

112 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

In [14]: overlay.const_multiply.stream_multiply([1,2,3,4,5], 5)

Out[14]: ContiguousArray([5, 10, 15, 20, 25], dtype=uint32)

Overlay Customisation

While the default overlay is sufficient for many use cases, some overlays will require more customisation to provide a
user-friendly API. As an example the default AXI GPIO drivers expose channels 1 and 2 as separate attributes meaning
that accessing the LEDs in the base overlay requires the following contortion

In [15]: base = Overlay('base.bit')
base.leds_gpio.channel1[0].on()

To mitigate this the overlay developer can provide a custom class for their overlay to expose the subsystems in a more
user-friendly way. The base overlay includes custom overlay class which performs the following functions: * Make
the AXI GPIO devices better named and range/direction restricted * Make the IOPs accessible through the pmoda,
pmodb and ardiuno names * Create a speical class to interact with RGB LEDs

The result is that the LEDs can be accessed like:

In [16]: from pynq.overlays.base import BaseOverlay

base = BaseOverlay('base.bit')
base.leds[0].on()

Using a well defined class also allows for custom docstrings to be provided also helping end users.

In [17]: base?

Creating a custom overlay

Custom overlay classes should inherit from pynq.UnknownOverlay taking a the full path of the bitstream file and
possible additional keyword arguments. These parameters should be passed to super().__init__() at the start
of __init__ to initialise the attributes of the Overlay. This example is designed to go with our tutorial_2 overlay
and adds a function to more easily call the multiplication function

In [18]: class TestOverlay(Overlay):
def __init__(self, bitfile, **kwargs):

super().__init__(bitfile, **kwargs)

def multiply(self, stream, constant):
return self.const_multiply.stream_multiply(stream, constant)

To test our new overlay class we can construct it as before.

In [19]: overlay = TestOverlay('/home/xilinx/tutorial_2.bit')
overlay.multiply([2,3,4,5,6], 4)

Out[19]: ContiguousArray([8, 12, 16, 20, 24], dtype=uint32)

Included Drivers

The pynq library includes a number of drivers as part of the pynq.lib package. These include * AXI GPIO *
AXI DMA (simple mode only) * AXI VDMA * AXI Interrupt Controller (internal use) * Pynq-Z1 Audio IP * Pynq-
Z1 HDMI IP * Color convert IP * Pixel format conversion * HDMI input and output frontends * Pynq Microblaze
program loading

2.6. Overlay Design Methodology 113

Python productivity for Zynq (Pynq) Documentation, Release 2.0

2.7 PYNQ SD Card

The PYNQ image for the PYNQ-Z1 is provided precompiled as a downloadable SD card image, so you do not need
to rerun this flow for the PYNQ-Z1 unless you want to make changes to the image flow.

This flow can also be used as a starting point to build a PYNQ image for another Zynq board.

The image flow will create the Zynq BOOT.bin, the u-boot bootloaded, the Linux Device tree blob, and the Linux
kernel.

The source files for the PYNQ image flow build can be found here:

<PYNQ repository>/sdbuild

More details on configuring the root filesystem can be found in the README file in the folder above.

2.7.1 Building the Image

It is recommended to use a Virtual machine to run the image build flow. A clean and recent VM image is recommended.
The flow provided has been tested on Ubuntu 16.04.

To build the image follow the steps below:

1. Install the correct version of Vivado and SDK

2. Install dependencies using the following script

The correct version of the Vivado and SDK is shown below:

Release version Vivado and SDK
v1.4 2015.4
v2.0 2016.1
v2.1 2017.4

<PYNQ repository>/sdbuild/scripts/setup_host.sh

3. Source the appropriate settings files from Vivado and Xilinx SDK

4. Navigate to the following directory and run make

cd <PYNQ repository>/sdbuild/
make

The build flow can take several hours.

2.7.2 Retargeting to a Different Board

While the root filesystem is portable between different Zynq boards the boot files will have to be customised for each
board. The boot files can be found in

<PYNQ repository>/sdbuild/boot_configs

There is a standardised flow for Zynq-7000 boards defined in

114 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

<PYNQ repository>/sdbuild/Zynq7000.makefile

This file is customised by setting a number of variables and providing paths to some setup scripts. The Board-specific
config file is by convention placed in:

<PYNQ repository>/sdbuild/boot_configs/<Board Name>-defconfig

Variables in config

The config file must define several variables:

• BOARD: e.g. PYNQ-Z1. This is used to customize some parts of the flow, and will utimately be used by Python

• BOARD_PART: e.g. xc7z020clg400-1. This is used to create a Vivado project and generate a Hardware
Description File (.hdf) for use in Xilinx SDK.

• BOARD_CONSTRAINTS: Path to the constraints file (.xdc) containing the top level constraints file for the
board.

• PS_CONFIG_TCL: The path to a tcl file that configures the instantiated Processing System IP.

• LINUX_REPO: The GitHub path to the Linux repository to clone from

• LINUX_COMMIT: The GitHub hash from which to clone the linux repository

• LINUX_CONFIG: The path to the Linux configuration file (.config)

• UBOOT_REPO: The GitHub path to the UBoot repository to clone from

• UBOOT_COMMIT: The GitHub hash from which to clone the UBoot repository

• UBOOT_CONFIG: The path to the UBoot configuration file (.config)

• BOARD_DTSI: The path to the devicetree fragment applied to the device tree generated by Xilinx SDK.

The config file can define several optional variables

• BOOT_BITSTREAM: The bitstream file (.bit) to be downloaded onto the PL at boot

Build Flow Description

The SD Card build flow starts by creating a simple Vivado Project using the BOARD, BOARD_PART,
BOARD_CONSTRAINTS, and PS_CONFIG variables. This vivado project is used to generate a Hardware De-
scription File (.hdf) for Xilinx SDK.

Following the cration of the Hardware Description File, the First State Bootloader (FSBL) and Device Tree file are
created. While the FSBL is not customisable, the device tree can be modified by addding or reconfiguring entries or
by BOARD_DTSI.

Next, the LINUX_REPO and UBOOT_REPO repositories are cloned, checked out and configured.

Finally, the BOOT_BITSTREAM is packaged.

Once a boot configuration is defined for a board it needs to be incorporated into a release which live in the following
folder:

<PYNQ repository>/sdbuild/releases

A release is a single (.config) file defining the variables:

• BOOT_CONFIG: Path to the name of the project folder in boot_configs

2.7. PYNQ SD Card 115

Python productivity for Zynq (Pynq) Documentation, Release 2.0

• ROOTFS_CONFIG: Should be consistent with the OS to be installed on board (e.g. Pynq-Z1-Xenial).

Release version OS
v1.4 Ubuntu Wily
v2.0 Ubuntu Wily
v2.1 Ubuntu Xenial

While the root filesystem is designed around the Pynq-Z1 board it should work on any board with similar connectivity,
i.e. PS attached Ethernet and USB host ports.

2.8 pynq Package

All PYNQ code is contained in the pynq Python package and can be found on the on the Github repository.

To learn more about Python package structures, please refer to the official python documentation.

Foundational modules:

• pynq.ps - Facilitates management of the Processing System (PS) and PS/PL interface.

• pynq.pl - Facilitates management of the Programmable Logic (PL).

• pynq.overlay - Manages the state, drivers, and and contents of overlays.

Data Movement modules:

• pynq.mmio - Implements PYNQ Memory Mapped IO (MMIO) API

• pynq.gpio - Implements PYNQ General-Purpose IO (GPIO) by wrapping the Linux Sysfs API

• pynq.xlnk - Implements Contiguous Memory Allocation for PYNQ DMA

Interrupt/AsyncIO Module:

• pynq.interrupt - Implements PYNQ asyncio

Sub-packages:

• pynq.lib - Contains sub-packages with drivers for for PMOD, Arduino and Logictools PYNQ Libraries, and
drivers for various communication controllers (GPIO, DMA, Video, Audio)

2.8.1 pynq.interrupt Module

class pynq.interrupt.Interrupt(pinname)
Bases: object

Class that provides the core wait-based API to end users

Provides a single coroutine wait that waits until the interrupt signal goes high. If the Overlay is changed or
re-downloaded this object is invalidated and waiting results in undefined behaviour.

wait()
Wait for the interrupt to be active

May raise an exception if the Overlay has been changed since initialisation.

116 Chapter 2. Summary

https://github.com/xilinx/PYNQ/
https://docs.python.org/3.5/tutorial/modules.html#packages

Python productivity for Zynq (Pynq) Documentation, Release 2.0

2.8.2 pynq.gpio Module

The pynq.gpio module is a driver for reading and writing PS GPIO pins on a board. PS GPIO pins are not connected
to the PL.

class pynq.gpio.GPIO(gpio_index, direction)
Bases: object

Class to wrap Linux’s GPIO Sysfs API.

This GPIO class does not handle PL I/O.

index
int – The index of the GPIO, starting from the GPIO base.

direction
str – Input/output direction of the GPIO.

path
str – The path of the GPIO device in the linux system.

direction
Direction of the GPIO pin - either ‘in’ or ‘out’ – str

static get_gpio_base()
This method returns the GPIO base using Linux’s GPIO Sysfs API.

This is a static method. To use:

>>> from pynq import GPIO

>>> gpio = GPIO.get_gpio_base()

Note: For path ‘/sys/class/gpio/gpiochip138/’, this method returns 138.

Returns The GPIO index of the base.

Return type int

static get_gpio_pin(gpio_user_index)
This method returns a GPIO instance for PS GPIO pins.

Users only need to specify an index starting from 0; this static method will map this index to the correct
Linux GPIO pin number.

Note: The GPIO pin number can be calculated using: GPIO pin number = GPIO base + GPIO offset +
user index e.g. The GPIO base is 138, and pin 54 is the base GPIO offset. Then the Linux GPIO pin would
be (138 + 54 + 0) = 192.

Parameters gpio_user_index (int) – The index specified by users, starting from 0.

Returns The Linux Sysfs GPIO pin number.

Return type int

index
Index of the GPIO pin – int

2.8. pynq Package 117

Python productivity for Zynq (Pynq) Documentation, Release 2.0

path
Path to the GPIO pin in the filesystem – str

read()
The method to read a value from the GPIO.

Returns An integer read from the GPIO

Return type int

write(value)
The method to write a value into the GPIO.

Parameters value (int) – An integer value, either 0 or 1

Returns

Return type None

2.8.3 pynq.lib Package

pynq.lib contains the arduino, pmod, and logictools subpackages, and additional modules for communicating with
other controllers in an overlay.

Modules:

• pynq.lib.audio - Implements mono-mode audio driver using pulse density modulation (PDM)

• pynq.lib.axigpio - Implements driver for AXI GPIO IP

• pynq.lib.button - Implements driver for AXI GPIO push button IP

• pynq.lib.dma - Implements driver for the AXI Direct Memory Access (DMA) IP

• pynq.lib.led - Implements driver for AXI GPIO LED IP

• pynq.lib.pynqmicroblaze - Implements communcation and control for a PYNQ MicroBlaze subsystem

• pynq.lib.rgbled - Implements driver for AXI GPIO multi color LEDs

• pynq.lib.switch - Implements driver for AXI GPIO Dual In-Line (DIP) switches

• pynq.lib.usb_wifi - Implements driver for USB WiFi dongles

• pynq.lib.video - Implements driver for HDMI video input/output

Subpackages:

• pynq.lib.arduino - Implements driver for Arduino IO Processor Subsystem

• pynq.lib.pmod - Implements driver for PMOD IO Processor Subsystem

• pynq.lib.logictools - Implements driver for Logictools IP Processor Subsystem

pynq.lib.audio Module

The pynq.lib.audio module is a driver for reading and recording values from an on-board audio mirophone, loading
preexisting audio files, or playing audio input to an output device.

class pynq.lib.audio.AudioADAU1761(description)
Bases: pynq.overlay.DefaultIP

Class to interact with audio codec controller.

118 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Each raw audio sample is a 24 bits, padded to 32 bits. The audio controller supports both mono and stereo
modes, and I2S format of data.

buffer
numpy.ndarray – The numpy array to store the audio.

sample_rate
int – Sample rate of the codec.

sample_len
int – Sample length of the current buffer content.

iic_index
int – The index of the IIC instance in /dev.

uio_index
int – The index of the UIO instance in /dev.

bindto = ['xilinx.com:user:audio_codec_ctrl:1.0']

bypass(seconds)
Stream audio controller input directly to output.

It will run for a certain number of seconds, then stop automatically.

Parameters seconds (float) – The number of seconds to be recorded.

Returns

Return type None

configure(sample_rate=48000, iic_index=1, uio_index=1)
Configure the audio codec.

The sample rate of the codec is 48KHz, by default. This method will configure the PLL and codec registers.

Parameters

• sample_rate (int) – Sample rate of the codec.

• iic_index (int) – The index of the IIC instance in /dev.

• uio_index (int) – The index of the UIO instance in /dev.

deselect_inputs()
Deselect the inputs.

This method will disable both LINE_IN and MIC inputs.

static info(file)
Prints information about the sound files.

The information includes name, channels, samples, frames, etc.

Note: The file will be searched in the specified path, or in the working directory in case the path does not
exist.

Parameters file (string) – File name, with a default extension of wav.

Returns

Return type None

2.8. pynq Package 119

Python productivity for Zynq (Pynq) Documentation, Release 2.0

load(file)
Loads file into internal audio buffer.

The recorded file is of format *.wav. Note that we expect 32-bit samples in the buffer while the each saved
sample is only 24 bits. Hence we need to pad the highest 8 bits when reading the wave file.

Note: The file will be searched in the specified path, or in the working directory in case the path does not
exist.

Parameters file (string) – File name, with a default extension of wav.

Returns

Return type None

play()
Play audio buffer via audio jack.

Since both channels are sampled, the buffer size has to be twice the sample length.

Returns

Return type None

record(seconds)
Record data from audio controller to audio buffer.

The sample rate for both channels is 48000Hz. Note that the sample_len will only be changed when the
buffer is modified. Since both channels are sampled, the buffer size has to be twice the sample length.

Parameters seconds (float) – The number of seconds to be recorded.

Returns

Return type None

save(file)
Save audio buffer content to a file.

The recorded file is of format *.wav. Note that only 24 bits out of each 32-bit sample are the real samples;
the highest 8 bits are padding, which should be removed when writing the wave file.

Note: The saved file will be put into the specified path, or in the working directory in case the path does
not exist.

Parameters file (string) – File name, with a default extension of wav.

Returns

Return type None

select_line_in()
Select LINE_IN on the board.

This method will select the LINE_IN as the input.

select_microphone()
Select MIC on the board.

This method will select the MIC as the input.

120 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

class pynq.lib.audio.AudioDirect(description, gpio_name=None)
Bases: pynq.overlay.DefaultIP

Class to interact with audio controller.

Each audio sample is a 32-bit integer. The audio controller supports only mono mode, and uses pulse density
modulation (PDM).

mmio
MMIO – The MMIO object associated with the audio controller.

gpio
GPIO – The GPIO object associated with the audio controller.

buffer
numpy.ndarray – The numpy array to store the audio.

sample_rate
int – Sample rate of the current buffer content.

sample_len
int – Sample length of the current buffer content.

bindto = ['xilinx.com:user:audio_direct:1.1']

bypass_start()
Stream audio controller input directly to output.

Returns

Return type None

bypass_stop()
Stop streaming input to output directly.

Returns

Return type None

static info(file)
Prints information about the sound files.

The information includes name, channels, samples, frames, etc.

Note: The file will be searched in the specified path, or in the working directory in case the path does not
exist.

Parameters file (string) – File name, with a default extension of pdm.

Returns

Return type None

load(file)
Loads file into internal audio buffer.

The recorded file is of format *.pdm.

Note: The file will be searched in the specified path, or in the working directory in case the path does not
exist.

2.8. pynq Package 121

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Parameters file (string) – File name, with a default extension of pdm.

Returns

Return type None

play()
Play audio buffer via audio jack.

Returns

Return type None

record(seconds)
Record data from audio controller to audio buffer.

The sample rate per word is 192000Hz.

Parameters seconds (float) – The number of seconds to be recorded.

Returns

Return type None

save(file)
Save audio buffer content to a file.

The recorded file is of format *.pdm.

Note: The saved file will be put into the specified path, or in the working directory in case the path does
not exist.

Parameters file (string) – File name, with a default extension of pdm.

Returns

Return type None

pynq.lib.axigpio Module

The pynq.lib.axigpio module is a driver for interacting with the Xilinx AXIGPIO IP Block. Each AXI GPIO IP
instantiated in the fabric has at least one, and at most two channels.

class pynq.lib.axigpio.AxiGPIO(description)
Bases: pynq.overlay.DefaultIP

Class for interacting with the AXI GPIO IP block.

This class exposes the two banks of GPIO as the channel1 and channel2 attributes. Each channel can have the
direction and the number of wires specified.

The wires in the channel can be accessed from the channel using slice notation - all slices must have a stride
of 1. Input wires can be read and output wires can be written to, toggled, or turned off or on. InOut channels
combine the functionality of input and output channels. The tristate of the pin is determined by whether the pin
was last read or written.

class Channel(parent, channel)
Bases: object

Class representing a single channel of the GPIO controller.

122 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Wires are and bundles of wires can be accessed using array notation with the methods on the wires deter-
mined by the type of the channel:

input_channel[0].read()
output_channel[1:3].on()

This class instantiated not used directly, instead accessed through the AxiGPIO classes attributes. This
class exposes the wires connected to the channel as an array or elements. Slices of the array can be
assigned simultaneously.

read()
Read the state of the input pins

setdirection(direction)
Set the direction of the channel

Must be one of AxiGPIO.{Input, Output, InOut} or the string ‘in’, ‘out’, or ‘inout’

setlength(length)
Set the number of wires connected to the channel

trimask
Gets or sets the tri-state mask for an inout channel

wait_for_interrupt_async()
Wait for the interrupt on the channel to be signalled

This is intended to be used by slices waiting for a particular value but can be used in any situation to
wait for a per-channel interrupt.

write(val, mask)
Set the state of the output pins

class InOut(parent, start, stop)
Bases: pynq.lib.axigpio.Output, pynq.lib.axigpio.Input

Class representing wires in an inout channel.

This class should be passed to setdirection to indicate the channel should be used for both input and output.
It should not be used directly.

read()
Reads the value of all the wires in the slice

Changes the tristate of the slice to input. If there is more than one wire in the slice then the least
significant bit of the return value corresponds to the wire with the lowest index.

write(val)
Set the value of the slice

Changes the tristate of the slice to output. If the slice consists of more than one wire then the least
significant bit of val corresponds to the lowest index wire.

class Input(parent, start, stop)
Bases: object

Class representing wires in an input channel.

This class should be passed to setdirection to indicate the channel should be used for input only. It should
not be used directly.

read()
Reads the value of all the wires in the slice

2.8. pynq Package 123

Python productivity for Zynq (Pynq) Documentation, Release 2.0

If there is more than one wire in the slice then the least significant bit of the return value corresponds
to the wire with the lowest index.

wait_for_value(value)
Wait until the specified value is read

This function is dependent on interrupts being enabled and will throw a RuntimeError otherwise.
Internally it uses asyncio so should not be used inside an asyncio task. Use wait_for_value_async if
using asyncio.

wait_for_value_async(value)
Coroutine that waits until the specified value is read

This function relies on interrupts being available for the IP block and will throw a RuntimeError
otherwise.

class Output(parent, start, stop)
Bases: object

Class representing wires in an output channel.

This class should be passed to setdirection to indicate the channel should be used for output only. It should
not be used directly.

off()
Turns off all of the wires in the slice

on()
Turns on all of the wires in the slice

read()
Reads the value of all the wires in the slice

If there is more than one wire in the slice then the least significant bit of the return value corresponds
to the wire with the lowest index.

toggle()
Toggles all of the wires in the slice

write(val)
Set the value of the slice

If the slice consists of more than one wire then the least significant bit of val corresponds to the lowest
index wire.

bindto = ['xilinx.com:ip:axi_gpio:2.0']

setdirection(direction, channel=1)
Sets the direction of a channel in the controller

Must be one of AxiGPIO.{Input, Output, InOut} or the string ‘in’, ‘out’ or ‘inout’

setlength(length, channel=1)
Sets the length of a channel in the controller

pynq.lib.button Module

The pynq.lib.rgbled module is a driver for reading values from onboard push-buttons and waiting for button-triggered
events.

class pynq.lib.button.Button(index)
Bases: object

124 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

This class controls the onboard push-buttons.

index
int – Index of the push-buttons, starting from 0.

read()
Read the current value of the button.

Returns Either 1 if the button is pressed or 0 otherwise

Return type int

wait_for_value(value)
Wait for the button to be pressed or released

Parameters

• value (int) – 1 to wait for press or 0 to wait for release

• function wraps the coroutine form so the asyncio (This) –

• loop will run until the function returns (event) –

wait_for_value_async(value)
Wait for the button to be pressed or released

Parameters

• value (int) – 1 to wait for press or 0 to wait for release

• function is an asyncio coroutine (This) –

pynq.lib.dma Module

class pynq.lib.dma.DMA(description, *args, **kwargs)
Bases: pynq.overlay.DefaultIP

Class for Interacting with the AXI Simple DMA Engine

This class provides two attributes for the read and write channels. The read channel copies data from the stream
into memory and the write channel copies data from memory to the output stream. Both channels have an
identical API consisting of transfer and wait functions. If interrupts have been enabled and connected for the
DMA engine then wait_async is also present.

Buffers to be transferred must be allocated through the Xlnk driver using the cma_array function either directly
or indirectly. This means that Frames from the video subsystem can be transferred using this class.

recvchannel
_DMAChannel – The stream to memory channel

sendchannel
_DMAChannel – The memory to stream channel

bindto = ['xilinx.com:ip:axi_dma:7.1']

class pynq.lib.dma.LegacyDMA(address, direction=1, attr_dict=None)
Bases: object

Python class which controls DMA.

This is a generic DMA class that can be used to access main memory.

The DMA direction can be:

(0)‘DMA_TO_DEV‘ : DMA sends data to PL.

2.8. pynq Package 125

Python productivity for Zynq (Pynq) Documentation, Release 2.0

(1)‘DMA_FROM_DEV‘ : DMA receives data from PL.

(3)‘DMA_BIDIRECTIONAL‘ : DMA can send/receive data from PL.

buf
cffi.FFI.CData – A pointer to physically contiguous buffer.

bufLength
int – Length of internal buffer in bytes.

phyAddress
int – Physical address of the DMA device.

DMAengine
cdata ‘XAxiDma *’ – DMA engine instance defined in C. Not to be directly modified.

DMAinstance
cdata ‘XAxiDma_Config *’ – DMA configuration instance struct. Not to be directly modified.

direction
int – The direction indicating whether DMA sends/receives data from PL.

Configuration
dict – Current DMAinstance configuration values.

Note: If this class is parsed on an unsupported architecture it will issue a warning and leave the class variables
libxlnk and libdma undefined

DMA_BIDIRECTIONAL = 3

DMA_FROM_DEV = 1

DMA_TO_DEV = 0

DMA_TRANSFER_LIMIT_BYTES = 8388607

DefaultConfig = {'S2MmNumChannels': 1, 'S2MmDataWidth': 64, 'Mm2sNumChannels': 1, 'HasMm2SDRE': 0, 'HasSg': 0, 'HasS2Mm': 1, 'BaseAddr': <cdata 'uint32_t *' NULL>, 'HasMm2S': 0, 'MicroDmaMode': 0, 'HasStsCntrlStrm': 0, 'S2MmBurstSize': 64, 'Mm2SDataWidth': 32, 'Mm2SBurstSize': 16, 'HasS2MmDRE': 0, 'AddrWidth': 32, 'DeviceId': 0}

DeviceId = 0

LIB_SEARCH_PATH = '/home/docs/checkouts/readthedocs.org/user_builds/pynq/checkouts/v2.1/pynq/lib'

configure(attr_dict=None)
Reconfigure and Reinitialize the DMA IP.

Uses a user provided dict to reinitialize the DMA. This method also frees the internal buffer associated
with current object.

The keys in attr_dict should exactly match the ones used in default config. All the keys are not required.
The default configuration is defined in self.DefaultConfig dict. Users can reinitialize the DMA with new
configuratiuon after creating the object.

Parameters attr_dict (dict) – A dictionary specifying DMA configuration values.

Returns

Return type None

create_buf(num_bytes, cacheable=0)
Allocate physically contiguous memory buffer.

Allocates/Reallocates buffer needed for DMA operations.

Possible values for parameter cacheable are:

126 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

1: the memory buffer is cacheable.

0: the memory buffer is non-cacheable.

Note: This buffer is allocated inside the kernel space using xlnk driver. The maximum allocatable memory
is defined at kernel build time using the CMA memory parameters. For Pynq-Z1 kernel, it is specified as
128MB.

Parameters

• num_bytes (int) – Length of the allocated array in bytes.

• cacheable (int) – Indicating whether or not the memory buffer is cacheable

Returns

Return type None

ffi = <cffi.api.FFI object>

free_buf()
Free the memory buffer associated with this object.

Use this to free a previously allocated memory buffer. This is specially useful for reallocations.

Returns

Return type None

get_buf(width=32)
Get a CFFI pointer to object’s internal buffer.

This can be accessed like a regular array in python. The width can be either 32 or 64.

Parameters width (int) – The data width in the buffer.

Returns An CFFI object which can be accessed similar to arrays in C.

Return type cffi.FFI.CData

get_ndarray(shape=None, dtype=<class ’numpy.float32’>, cacheable=0)
Get a numpy ndarray of the DMA buffer, if shape is provided the buffer is resized to fit the specified shape.

Parameters

• shape (int array) – Shape of the numpy array to return

• dtype (numpy.dtype) – Type of the numpy array to return

• cacheable (int) – Passed to create_buf if a shape is provided

Returns Numpy view of the DMA buffer

Return type numpy.ndarray

memapi = <cffi.api.FFI object>

transfer(num_bytes=-1, direction=-1)
Transfer data using DMA (Non-blocking).

Used to initiate transfer of data between a physically contiguous buffer and PL. The buffer should be
allocated using create_buf or get_ndarray before this call.

The num_bytes defaults to the buffer size and be both less than or equal to the buffer size and
DMA_TRANSFER_LIMIT_BYTES.

2.8. pynq Package 127

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Possible values for direction are:

(0)‘DMA_TO_DEV‘ : DMA sends data to PL.

(1)‘DMA_FROM_DEV‘ : DMA receives data from PL.

If the direction is not specified it uses the direction passed at initialisation. This is not valid for bidirectional
DMA.

Parameters

• num_bytes (int) – Number of bytes to transfer.

• direction (int) – Direction in which DMA transfers data.

Returns

Return type None

wait(wait_timeout=10)
Block till DMA is busy or a timeout occurs.

Default value of timeout is 10 seconds.

Parameters wait_timeout (int) – Time to wait in seconds before timing out wait opera-
tion.

Returns

Return type None

class pynq.lib.dma.timeout(seconds=1, error_message=’Timeout’)
Bases: object

Internal timeout functions.

This class is only used internally.

handle_timeout(signum, frame)

pynq.lib.led Module

The pynq.lib.rgbled module is a driver for controlling onboard single-color Light Emitting Diodes (LEDs).

class pynq.lib.led.LED(index)
Bases: object

This class controls the onboard LEDs.

index
int – The index of the onboard LED, starting from 0.

off()
Turn off a single LED.

Returns

Return type None

on()
Turn on a single LED.

Returns

Return type None

128 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

read()
Retrieve the LED state.

Returns Either 0 if the LED is off or 1 if the LED is on.

Return type int

toggle()
Flip the state of a single LED.

If the LED is on, it will be turned off. If the LED is off, it will be turned on.

Returns

Return type None

write(value)
Set the LED state according to the input value.

Parameters value (int) – This parameter can be either 0 (off) or 1 (on).

Raises ValueError – If the value parameter is not 0 or 1.

pynq.lib.pynqmicroblaze.pynqmicroblaze Module

class pynq.lib.pynqmicroblaze.pynqmicroblaze.MBInterruptEvent(intr_pin,
intr_ack_gpio)

Bases: object

The class provides and asyncio Event-like interface to the interrupt subsystem for a Microblaze. The event is
set by raising an interrupt and cleared using the clear function.

Typical use is to call clear prior to sending a request to the Microblaze and waiting in a loop until the response
is received. This order of operations will avoid race conditions between the Microblaze and the host code.

clear()
Clear the interrupt and reset the event. Resetting the event should be done before sending a request that
will be acknowledged interrupts.

wait()
Coroutine to wait until the event is set by an interrupt.

class pynq.lib.pynqmicroblaze.pynqmicroblaze.MicroblazeHierarchy(description,
mb-
type=’Unknown’)

Bases: pynq.overlay.DefaultHierarchy

Hierarchy driver for the microblaze subsystem.

Enables the user to load programs on to the microblaze. All function calls and member accesses are delegated
to the loaded program.

static checkhierarchy(description)

mbtype
The defined type of the microblaze subsystem. Used by driver programs to limit what microblaze subsys-
tems the program is run on. The Pynq-Z1 base overlay has ‘Ardiuno’ and ‘Pmod’ microblaze types.

class pynq.lib.pynqmicroblaze.pynqmicroblaze.PynqMicroblaze(mb_info,
mb_program,
force=False)

Bases: object

This class controls the active Microblaze instances in the system.

2.8. pynq Package 129

Python productivity for Zynq (Pynq) Documentation, Release 2.0

ip_name
str – The name of the IP corresponding to the Microblaze.

rst_name
str – The name of the reset pin for the Microblaze.

mb_program
str – The absolute path of the Microblaze program.

state
str – The status (IDLE, RUNNING, or STOPPED) of the Microblaze.

reset_pin
GPIO – The reset pin associated with the Microblaze.

mmio
MMIO – The MMIO instance associated with the Microblaze.

interrupt
Event – An asyncio.Event-like class for waiting on and clearing interrupts.

program()
This method programs the Microblaze.

This method is called in __init__(); it can also be called after that. It uses the attribute self.mb_program to
program the Microblaze.

Returns

Return type None

read(offset, length=1)
This method reads data from the shared memory of Microblaze.

Parameters

• offset (int) – The beginning offset where data are read from.

• length (int) – The number of data (32-bit int) to be read.

Returns An int of a list of data read from the shared memory.

Return type int/list

reset()
Reset the Microblaze to stop it from running.

This method will update the status of the Microblaze.

Returns

Return type None

run()
Start the Microblaze to run program loaded.

This method will update the status of the Microblaze.

Returns

Return type None

write(offset, data)
This method write data into the shared memory of the Microblaze.

Parameters

130 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

• offset (int) – The beginning offset where data are written into.

• data (int/list) – A list of 32b words to be written.

Returns

Return type None

pynq.lib.pynqmicroblaze.compile Module

class pynq.lib.pynqmicroblaze.compile.MicroblazeProgram(mb_info, program_text,
bsp=None)

Bases: pynq.lib.pynqmicroblaze.pynqmicroblaze.PynqMicroblaze

pynq.lib.pynqmicroblaze.compile.dependencies(source, bsp)

pynq.lib.pynqmicroblaze.compile.preprocess(source, bsp=None, mb_info=None)

pynq.lib.pynqmicroblaze.rpc Module

class pynq.lib.pynqmicroblaze.rpc.ConstPointerWrapper(type_, struct_string)
Bases: object

Wrapper for const T pointers, transfers data in only one direction.

param_decode(old_val, stream)

param_encode(old_val)

post_argument(name)

pre_argument(name)

return_decode(stream)

class pynq.lib.pynqmicroblaze.rpc.FuncAdapter(decl, typedefs)
Bases: object

Provides the C and Python interfaces for a function declaration

return_interface
TypeWrapper – The type wrapper for the return type

arg_interfaces
[TypeWrapper] – An array of type wrappers for the arguments

call_ast
pycparser.c_ast – Syntax tree for the wrapped function call

pack_args(*args)
Create a bytes of the provided arguments

receive_response(stream, *args)
Reads the response stream, updates arguments and returns the value of the function call if applicable

class pynq.lib.pynqmicroblaze.rpc.FuncDefVisitor
Bases: pycparser.c_ast.NodeVisitor

Primary visitor that parses out function definitions, typedes and enumerations from a syntax tree

visit_Enum(node)

visit_FuncDecl(node)

2.8. pynq Package 131

Python productivity for Zynq (Pynq) Documentation, Release 2.0

visit_FuncDef(node)

visit_Typedef(node)

class pynq.lib.pynqmicroblaze.rpc.MicroblazeFunction(stream, index, function, re-
turn_type)

Bases: object

Calls a specific function

call_async(*args)

class pynq.lib.pynqmicroblaze.rpc.MicroblazeLibrary(iop, libraries)
Bases: pynq.lib.pynqmicroblaze.rpc.MicroblazeRPC

Provides simple Python-only access to a set of Microblaze libraries.

The members of this class are determined by the libraries chosen and can determined either by using dir on
the instance or the ? operator inside of IPython

class pynq.lib.pynqmicroblaze.rpc.MicroblazeRPC(iop, program_text)
Bases: object

Provides a python interface to the Microblaze based on an RPC mechanism.

The attributes of the class are generated dynamically from the typedefs, enumerations and functions given in the
provided source.

Functions are added as methods, the values in enumerations are added as constants to the class and types are
added as classes.

release()
Alias for reset()

reset()
Reset and free the microblaze for use by other programs

class pynq.lib.pynqmicroblaze.rpc.ParsedEnum
Bases: object

Holds the values of an enum from the C source

class pynq.lib.pynqmicroblaze.rpc.PointerWrapper(type_, struct_string)
Bases: object

Wrapper for non-const T pointers that retrieves any data modified by the called function.

param_decode(old_val, stream)

param_encode(old_val)

post_argument(name)

pre_argument(name)

return_decode(stream)

class pynq.lib.pynqmicroblaze.rpc.PrimitiveWrapper(struct_string, type_)
Bases: object

Wrapper for C primitives that can be represented by a single Struct string.

param_decode(old_val, stream)

param_encode(old_val)

post_argument(name)

132 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

pre_argument(name)

return_decode(stream)

class pynq.lib.pynqmicroblaze.rpc.VoidPointerWrapper(type_)
Bases: object

Wrapper for a void* pointer that will refer to a physically contiguous chunk of memory.

param_decode(old_val, stream)

param_encode(old_val)

post_argument(name)

pre_argument(name)

return_decode(stream)

class pynq.lib.pynqmicroblaze.rpc.VoidWrapper
Bases: object

Wraps void - only valid for return types

param_decode(old_val, stream)

param_encode(old_val)

post_argument(name)

pre_argument(name)

return_decode(stream)

pynq.lib.pynqmicroblaze.magic Module

class pynq.lib.pynqmicroblaze.magic.MicroblazeMagics(shell=None, **kwargs)
Bases: IPython.core.magic.Magics

magics = {'line': {}, 'cell': {'microblaze': 'microblaze'}}

microblaze(line, cell)

name2obj(name)

registered = True

pynq.lib.pynqmicroblaze.streams Module

class pynq.lib.pynqmicroblaze.streams.InterruptMBStream(iop, read_offset=62464,
write_offset=61440)

Bases: pynq.lib.pynqmicroblaze.streams.SimpleMBStream

read_async()

wait_for_data_async()

class pynq.lib.pynqmicroblaze.streams.SimpleMBChannel(buffer, offset=0, length=0)
Bases: object

buffer_space()

bytes_available()

read(n=-1)

2.8. pynq Package 133

Python productivity for Zynq (Pynq) Documentation, Release 2.0

read_upto(n=-1)

write(b)

class pynq.lib.pynqmicroblaze.streams.SimpleMBStream(iop, read_offset=62464,
write_offset=61440)

Bases: object

buffer_space()

bytes_available()

read(n=-1)

read_byte()

read_float()

read_int16()

read_int32()

read_string()

read_uint16()

read_uint32()

write(b)

write_address(p, adjust=True)

write_byte(b)

write_float(f)

write_int16(i)

write_int32(i)

write_string(s)

write_uint16(u)

write_uint32(u)

pynq.lib.pynqmicroblaze.bsp Module

class pynq.lib.pynqmicroblaze.bsp.BSPInstance(root)
Bases: object

class pynq.lib.pynqmicroblaze.bsp.Module(root)
Bases: object

pynq.lib.pynqmicroblaze.bsp.add_bsp(directory)

pynq.lib.pynqmicroblaze.bsp.add_module_path(directory)

pynq.lib.rgbled Module

The pynq.lib.rgbled module is a driver for controlling onboard Red-Green-Blue (RGB) Light Emitting Diodes (LEDs).

134 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

class pynq.lib.rgbled.RGBLED(index)
Bases: object

This class controls the onboard RGB LEDs.

index
int – The index of the RGB LED, from 4 (LD4) to 5 (LD5).

_mmio
MMIO – Shared memory map for the RGBLED GPIO controller.

_rgbleds_val
int – Global value of the RGBLED GPIO pins.

off()
Turn off a single RGBLED.

Returns

Return type None

on(color)
Turn on a single RGB LED with a color value (see color constants).

Parameters color (int) – Color of RGB specified by a 3-bit RGB integer value.

Returns

Return type None

read()
Retrieve the RGBLED state.

Returns The color value stored in the RGBLED.

Return type int

write(color)
Set the RGBLED state according to the input value.

Parameters color (int) – Color of RGB specified by a 3-bit RGB integer value.

Returns

Return type None

pynq.lib.switch Module

The pynq.lib.switch module is a driver for reading, and waiting for value changes on onboard switches.

class pynq.lib.switch.Switch(index)
Bases: object

This class controls the onboard switches.

index
int – Index of the onboard switches, starting from 0.

read()
Read the current value of the switch.

Returns Either 0 if the switch is off or 1 if the switch is on

Return type int

2.8. pynq Package 135

Python productivity for Zynq (Pynq) Documentation, Release 2.0

wait_for_value(value)
Wait for the switch to be set to a particular position

Parameters

• value (int) – 1 for the switch up and 0 for the switch down

• function wraps the coroutine form so the asyncio (This) –

• loop will run until the function returns (event) –

wait_for_value_async(value)
Wait for the switch to be set to a particular position

Parameters

• value (int) – 1 for the switch up and 0 for the switch down

• function is an asyncio coroutine (This) –

pynq.lib.usb_wifi Module

The pynq.lib.usb_wifi module is a python module for interacting with USB WiFI dongles. This module can be used to
connect and disconnect to wireless networks.

class pynq.lib.usb_wifi.Usb_Wifi(interface=’wlan0’)
Bases: object

This class controls the usb dongle wifi connection.

The board is compatible with RALink RT5370 devices.

Note: Administrator rights are necessary to create network interface file

wifi_port
str – string identifier of the wireless network device

connect(ssid, password)
Make a new wireless connection.

This function kills the wireless connection and connect to a new one using network ssid and WPA
passphrase. Wrong ssid or passphrase will reject the connection.

Parameters

• ssid (str) – Unique identifier of the wireless network

• password (str) – String WPA passphrase necessary to access the network

Returns

Return type None

gen_network_file(ssid, password)
Generate the network authentication file.

Generate the file from network SSID and WPA passphrase

Parameters

• ssid (str) – String unique identifier of the wireless network

• password (str) – String WPA passphrase necessary to access the network

136 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Returns

Return type None

reset()
Shutdown the network connection.

This function shutdown the network connection and delete the interface file.

Returns

Return type None

pynq.lib.video Module

The pynq.lib.video module is a driver capturing streaming HDMI input, producing streaming HDMI output and
hardware-accelerated colorspace conversion.

class pynq.lib.video.AxiVDMA(description, framecount=4)
Bases: pynq.overlay.DefaultIP

Driver class for the Xilinx VideoDMA IP core

The driver is split into input and output channels are exposed using the readchannel and writechannel attributes.
Each channel has start and stop methods to control the data transfer. All channels MUST be stopped before
reprogramming the bitstream or inconsistent behaviour may result.

The DMA uses a single ownership model of frames in that frames are either owned by the DMA or the user
code but not both. S2MMChannel.readframe and MM2SChannel.newframe both return a frame to the user. It
is the user’s responsibility to either free the frame using the freebuffer() method or to hand ownership back to
the DMA using MM2SChannel.writeframe. Once ownership has been returned the user should not access the
contents of the frame as the underlying memory may be deleted without warning.

readchannel
AxiVDMA.S2MMChannel – Video input DMA channel

writechannel
AxiVDMA.MM2SChannel – Video output DMA channel

class MM2SChannel(parent, interrupt)
Bases: object

DMA channel from memory to a video output.

Will continually repeat the most recent frame written.

mode
VideoMode – Video mode of the DMA channel

activeframe

desiredframe

framedelay

mode
The video mode of the DMA, must be called prior to starting. If changed while the DMA channel is
running the channel will be stopped

newframe()
Returns a frame of the appropriate size for the video mode.

The contents of the frame are undefined and should not be assumed to be black
Returns

2.8. pynq Package 137

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Return type numpy.ndarray video frame

parked
Is the channel parked or running in circular buffer mode

reload()
Reload the configuration of the DMA. Should only be called by the _FrameList class or if you really
know what you are doing

reset()
Soft reset the DMA channel

running

setframe(frame)
Sets a frame without blocking or taking ownership. In most circumstances writeframe() is more
appropriate

start()
Start the DMA channel with a blank screen. The mode must be set prior to calling or a RuntimeError
will result.

stop()
Stop the DMA channel and empty the frame cache

writeframe(frame)
Schedule the specified frame to be the next one displayed. Assumes ownership of frame which should
no longer be modified by the user. May block if there is already a frame scheduled.

writeframe_async(frame)
Same as writeframe() but yields instead of blocking if a frame is already scheduled

class S2MMChannel(parent, interrupt)
Bases: object

Read channel of the Video DMA

Brings frames from the video input into memory. Hands ownership of the read frames to the user code.

mode
VideoMode – The video mode of the DMA channel

activeframe
The frame index currently being processed by the DMA

This process requires clearing any error bits in the DMA channel

desiredframe
The next frame index to the processed by the DMA

irqframecount

mode
The video mode of the DMA. Must be set prior to starting. Changing this while the DMA is running
will result in the DMA being stopped.

parked
Is the channel parked or running in circular buffer mode

readframe()
Read a frame from the channel and return to the user

138 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

This function may block until a complete frame has been read. A single frame buffer is kept so the
first frame read after a long pause in reading may return a stale frame. To ensure an up-to-date frame
when starting processing video read an additional time before starting the processing loop.

Returns
Return type numpy.ndarray of the video frame

readframe_async()
Read a frame from the channel, yielding instead of blocking if no data is available. See readframe for
more details

reload()
Reload the configuration of the DMA. Should only be called by the _FrameList class or if you really
know what you are doing

reset()
Soft reset the DMA. Finishes all transfers before starting the reset process

running
Is the DMA channel running

start()
Start the DMA. The mode must be set prior to this being called

stop()
Stops the DMA, clears the frame cache and unhooks any tied outputs

tie(channel)
Ties an output channel to this input channel. This is used to pass video from input to output without
invoking the CPU for each frame. Main use case is when some slow processing is being done on a
subset of frames while the video is passed through directly to the output. Only one output may be
tied to an output. The tie is broken either by calling tie(None) or writing a frame to the tied output
channel.

bindto = ['xilinx.com:ip:axi_vdma:6.2', 'xilinx.com:ip:axi_vdma:6.3']

class pynq.lib.video.ColorConverter(description)
Bases: pynq.overlay.DefaultIP

Driver for the color space converter

The colorspace convert implements a 3x4 matrix for performing arbitrary linear color conversions. Each coeffi-
cient is represented as a 10 bit signed fixed point number with 2 integer bits. The result of the computation can
visualised as a table

in1 in2 in3 1 # out1 c1 c2 c3 c10 # out2 c4 c5 c6 c11 # out3 c7 c8 c9 c12

The color can be changed mid-stream.

colorspace
list of float – The coefficients of the colorspace conversion

bindto = ['xilinx.com:hls:color_convert:1.0']

colorspace
The colorspace to convert. See the class description for details of the coefficients. The coefficients are a
list of floats of length 12

class pynq.lib.video.HDMIIn(description, vdma=None)
Bases: pynq.overlay.DefaultHierarchy

Wrapper for the input video pipeline of the Pynq-Z1 base overlay

This wrapper assumes the following pipeline structure and naming

2.8. pynq Package 139

Python productivity for Zynq (Pynq) Documentation, Release 2.0

color_convert_in -> pixel_pack ->axi_vdma with vtc_in and axi_gpio_hdmiiin helper IP

frontend
pynq.lib.video.HDMIInFrontend – The HDMI frontend for signal detection

color_convert
pynq.lib.video.ColorConverter – The input color format converter

pixel_pack
pynq.lib.video.PixelPacker – Converts the input pixel size to that required by the VDMA

static checkhierarchy(description)

close()
Uninitialise the drivers, stopping the pipeline beforehand

colorspace
The colorspace of the pipeline, can be changed without stopping the pipeline

configure(pixelformat=<pynq.lib.video.PixelFormat object>)
Configure the pipeline to use the specified pixel format.

If the pipeline is running it is stopped prior to the configuration being changed

Parameters pixelformat (PixelFormat) – The pixel format to configure the pipeline for

mode
Video mode of the input

readframe()
Read a video frame

See AxiVDMA.S2MMChannel.readframe for details

readframe_async()
Read a video frame

See AxiVDMA.S2MMChannel.readframe for details

start()
Start the pipeline

stop()
Stop the pipeline

tie(output)
Mirror the video input on to an output channel

Parameters output (HDMIOut) – The output to mirror on to

class pynq.lib.video.HDMIInFrontend(description)
Bases: pynq.overlay.DefaultHierarchy

Class for interacting the with HDMI input frontend

This class is used for enabling the HDMI input and retrieving the mode of the incoming video

mode
VideoMode – The detected mode of the incoming video stream

static checkhierarchy(description)

mode

start(init_timeout=60)
Method that blocks until the video mode is successfully detected

140 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

stop()
Currently empty function included for symmetry with the HDMIOutFrontend class

class pynq.lib.video.HDMIOut(description, vdma=None)
Bases: pynq.overlay.DefaultHierarchy

Wrapper for the output video pipeline of the Pynq-Z1 base overlay

This wrapper assumes the following pipeline structure and naming

axi_vdma -> pixel_unpack -> color_convert -> frontend with vtc_out and axi_dynclk helper IP

frontend
pynq.lib.video.HDMIOutFrontend – The HDMI frontend for mode setting

color_convert
pynq.lib.video.ColorConverter – The output color format converter

pixel_unpack
pynq.lib.video.PixelPacker – Converts the input pixel size to 24 bits-per-pixel

static checkhierarchy(description)

close()
Close the pipeline an unintialise the drivers

colorspace
Set the colorspace for the pipeline - can be done without stopping the pipeline

configure(mode, pixelformat=None)
Configure the pipeline to use the specified pixel format and size.

If the pipeline is running it is stopped prior to the configuration being changed

Parameters

• mode (VideoMode) – The video mode to output

• pixelformat (PixelFormat) – The pixel format to configure the pipeline for

mode
The currently configured video mode

newframe()
Return an unintialised video frame of the correct type for the pipeline

start()
Start the pipeline

stop()
Stop the pipeline

writeframe(frame)
Write the frame to the video output

See AxiVDMA.MM2SChannel.writeframe for more details

writeframe_async(frame)
Write the frame to the video output

See AxiVDMA.MM2SChannel.writeframe for more details

class pynq.lib.video.HDMIOutFrontend(description)
Bases: pynq.overlay.DefaultHierarchy

Class for interacting the HDMI output frontend

2.8. pynq Package 141

Python productivity for Zynq (Pynq) Documentation, Release 2.0

This class is used for enabling the HDMI output and setting the desired mode of the video stream

mode
VideoMode – Desired mode for the output video. Must be set prior to calling start

static checkhierarchy(description)

mode
Get or set the video mode for the HDMI output, must be set to one of the following resolutions:

640x480 800x600 1280x720 1280x1024 1920x1080

Any other resolution will result in a ValueError being raised. The bits per pixel will always be 24 when
retrieved and ignored when set.

start = None
Start the HDMI output - requires the that mode is already set

stop = None
Stop the HDMI output

class pynq.lib.video.HDMIWrapper(description)
Bases: pynq.overlay.DefaultHierarchy

Hierarchy driver for the entire Pynq-Z1 video subsystem.

Exposes the input, output and video DMA as attributes. For most use cases the wrappers for the input and output
pipelines are sufficient and the VDMA will not need to be used directly.

hdmi_in
pynq.lib.video.HDMIIn – The HDMI input pipeline

hdmi_out
pynq.lib.video.HDMIOut – The HDMI output pipeline

axi_vdma
pynq.lib.video.AxiVDMA – The video DMA.

static checkhierarchy(description)

class pynq.lib.video.PixelFormat(bits_per_pixel, in_color, out_color)
Bases: object

Wrapper for all of the information about a video format

bits_per_pixel
int – Number of bits for each pixel

in_color
list of float – Coefficients from BGR stream to pixel format

out_color
list of float – Coefficient from pixel format to BGR stream

class pynq.lib.video.PixelPacker(description)
Bases: pynq.overlay.DefaultIP

Driver for the pixel format convert

Changes the number of bits per pixel in the video stream. The stream should be paused prior to the width being
changed. This can be targeted at either a pixel_pack or a pixel_unpack IP core.For a packer the input is always
24 bits per pixel while for an unpacker the output 24 bits per pixel.

bindto = ['xilinx.com:hls:pixel_pack:1.0', 'xilinx.com:hls:pixel_unpack:1.0']

142 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

bits_per_pixel
Number of bits per pixel in the stream

Valid values are 8, 24 and 32. The following table describes the operation for packing and unpacking for
each width

Mode Pack Unpack 8 bpp Keep only the first channel Pad other channels with 0 16 bpp Dependent on
resample Dependent on resample 24 bpp No change No change 32 bpp Pad channel 4 with 0 Discard
channel 4

resample
Perform chroma resampling in 16 bpp mode

Boolean property that only affects 16 bpp mode. If True then the two chroma channels are multiplexed
on to the second output pixel, otherwise only the first and second channels are transferred and the third is
discarded

class pynq.lib.video.VideoMode(width, height, bits_per_pixel, stride=None)
Bases: object

Class for holding the information about a video mode

height
int – Height of the video frame in lines

width
int – Width of the video frame in pixels

stride
int – Width of a line in the video frame in bytes

bits_per_pixel
int – Bits per pixel

bytes_per_Pixel
int – Bytes required to represent each pixel

shape
tuple of int – Numpy-style tuple describing the video frame

pynq.lib.arduino Package

The pynq.lib.arduino package is a collection of drivers for controlling peripherals attached to an Arduino pin interface.
The Arduino interface can control Arduino peripherals or Grove peripherals (via the PYNQ Grove shield)

pynq.lib.arduino.arduino_analog Module

class pynq.lib.arduino.arduino_analog.Arduino_Analog(mb_info, gr_pin)
Bases: object

This class controls the Arduino Analog.

XADC is an internal analog controller in the hardware. This class provides API to do analog reads from IOP.

microblaze
Arduino – Microblaze processor instance used by this module.

log_running
int – The state of the log (0: stopped, 1: started).

2.8. pynq Package 143

Python productivity for Zynq (Pynq) Documentation, Release 2.0

log_interval_ms
int – Time in milliseconds between samples on the same channel.

gr_pin
list – A group of pins on arduino-grove shield.

num_channels
int – The number of channels sampled.

get_log()
Return list of logged samples.

Returns List of valid voltage samples (floats) from the ADC sensor.

Return type list

get_log_raw()
Return list of logged raw samples.

Returns List of valid raw samples from the analog device.

Return type list

read()
Read the voltage value from the analog peripheral.

Returns The float values after translation.

Return type list

read_raw()
Read the analog raw value from the analog peripheral.

Returns The raw values from the analog device.

Return type list

reset()
Resets the system monitor for analog devices.

Returns

Return type None

set_log_interval_ms(log_interval_ms)
Set the length of the log for the analog peripheral.

This method can set the time interval between two samples, so that users can read out multiple values in a
single log.

Parameters log_interval_ms (int) – The time between two samples in milliseconds, for
logging only.

Returns

Return type None

start_log()
Start recording multiple voltage values (float) in a log.

This method will first call set_log_interval_ms() before writing to the MMIO.

Returns

Return type None

144 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

start_log_raw()
Start recording raw data in a log.

This method will first call set_log_interval_ms() before writing to the MMIO.

Returns

Return type None

stop_log()
Stop recording the voltage values in the log.

This can be done by calling the stop_log_raw() method.

Returns

Return type None

stop_log_raw()
Stop recording the raw values in the log.

Simply write 0xC to the MMIO to stop the log.

Returns

Return type None

pynq.lib.arduino.arduino_grove_adc Module

class pynq.lib.arduino.arduino_grove_adc.Grove_ADC(mb_info, gr_pin)
Bases: object

This class controls the Grove IIC ADC.

Grove ADC is a 12-bit precision ADC module based on ADC121C021. Hardware version: v1.2.

microblaze
Arduino – Microblaze processor instance used by this module.

log_running
int – The state of the log (0: stopped, 1: started).

log_interval_ms
int – Time in milliseconds between sampled reads.

get_log()
Return list of logged samples.

Returns List of valid voltage samples (floats) from the ADC sensor.

Return type list

get_log_raw()
Return list of logged raw samples.

Returns List of valid raw samples from the ADC sensor.

Return type list

read()
Read the ADC voltage from the Grove ADC peripheral.

Returns The float value after translation.

Return type float

2.8. pynq Package 145

Python productivity for Zynq (Pynq) Documentation, Release 2.0

read_raw()
Read the ADC raw value from the Grove ADC peripheral.

Returns The raw value from the sensor.

Return type int

reset()
Resets/initializes the ADC.

Returns

Return type None

set_log_interval_ms(log_interval_ms)
Set the length of the log for the Grove ADC peripheral.

This method can set the time interval between two samples, so that users can read out multiple values in a
single log.

Parameters log_interval_ms (int) – The time between two samples in milliseconds, for
logging only.

Returns

Return type None

start_log()
Start recording multiple voltage values (float) in a log.

This method will first call set_log_interval_ms() before sending the command.

Returns

Return type None

start_log_raw()
Start recording raw data in a log.

This method will first call set_log_interval_ms() before sending the command.

Returns

Return type None

stop_log()
Stop recording the voltage values in the log.

Simply send the command 0xC to stop the log.

Returns

Return type None

stop_log_raw()
Stop recording the raw values in the log.

Simply send the command 0xC to stop the log.

Returns

Return type None

146 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

pynq.lib.arduino.arduino_grove_buzzer Module

class pynq.lib.arduino.arduino_grove_buzzer.Grove_Buzzer(mb_info, gr_pin)
Bases: object

This class controls the Grove Buzzer.

The grove buzzer module has a piezo buzzer as the main component. The piezo can be connected to digital
outputs, and will emit a tone when the output is HIGH. Alternatively, it can be connected to an analog pulse-
width modulation output to generate various tones and effects. Hardware version: v1.2.

microblaze
Arduino – Microblaze processor instance used by this module.

play_melody()
Play a melody.

Returns

Return type None

play_tone(tone_period, num_cycles)
Play a single tone with tone_period for num_cycles

Parameters

• tone_period (int) – The period of the tone in microsecond.

• num_cycles (int) – The number of cycles for the tone to be played.

Returns

Return type None

pynq.lib.arduino.arduino_grove_ear_hr Module

class pynq.lib.arduino.arduino_grove_ear_hr.Grove_EarHR(mb_info, gr_pin)
Bases: object

This class controls the Grove ear clip heart rate sensor. Sensor model: MED03212P.

microblaze
Arduino – Microblaze processor instance used by this module.

read()
Read the heart rate from the sensor.

Returns The heart rate as beats per minute

Return type float

read_raw()
Read the number of heart beats.

Read the number of beats since the sensor initialization; also read the time elapsed in ms between the latest
two heart beats.

Returns Number of heart beats and the time elapsed between 2 latest beats.

Return type tuple

2.8. pynq Package 147

Python productivity for Zynq (Pynq) Documentation, Release 2.0

pynq.lib.arduino.arduino_grove_finger_hr Module

class pynq.lib.arduino.arduino_grove_finger_hr.Grove_FingerHR(mb_info, gr_pin)
Bases: object

This class controls the Grove finger clip heart rate sensor.

Grove Finger sensor based on the TCS3414CS. Hardware version: v1.3.

microblaze
Arduino – Microblaze processor instance used by this module.

log_running
int – The state of the log (0: stopped, 1: started).

log_interval_ms
int – Time in milliseconds between sampled reads.

get_log()
Return list of logged samples.

Returns List of integers containing the heart rate.

Return type list

read()
Read the heart rate value from the Grove Finger HR peripheral.

Returns An integer representing the heart rate frequency.

Return type int

start_log(log_interval_ms=100)
Start recording multiple heart rate values in a log.

This method will first call set the log interval before writing to the MMIO.

Parameters log_interval_ms (int) – The time between two samples in milliseconds.

Returns

Return type None

stop_log()
Stop recording the values in the log.

Simply write 0xC to the MMIO to stop the log.

Returns

Return type None

pynq.lib.arduino.arduino_grove_haptic_motor Module

class pynq.lib.arduino.arduino_grove_haptic_motor.Grove_HapticMotor(mb_info,
gr_pin)

Bases: object

This class controls the Grove Haptic Motor based on the DRV2605L. Hardware version v0.9.

microblaze
Arduino – Microblaze processor instance used by this module.

148 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

is_playing()
Check if a vibration effect is running on the motor.

Returns True if a vibration effect is playing, false otherwise

Return type bool

play(effect)
Play a vibration effect on the Grove Haptic Motor peripheral.

Valid effect identifiers are in the range [1, 127].

Parameters effect (int) – An integer that specifies the effect.

Returns

Return type None

play_sequence(sequence)
Play a sequence of effects possibly separated by pauses.

At most 8 effects or pauses can be specified at a time. Pauses are defined using negative integer values in
the range [-1, -127] that correspond to a pause length in the range [10, 1270] ms

Valid effect identifiers are in the range [1, 127]

As an example, in the following sequence example: [4,-20,5] effect 4 is played and after a pause of 200
ms effect 5 is played

Parameters sequence (list) – At most 8 values specifying effects and pauses.

Returns

Return type None

stop()
Stop an effect or a sequence on the motor peripheral.

Returns

Return type None

pynq.lib.arduino.arduino_grove_imu Module

class pynq.lib.arduino.arduino_grove_imu.Grove_IMU(mb_info, gr_pin)
Bases: object

This class controls the Grove IIC IMU.

Grove IMU 10DOF is a combination of grove IMU 9DOF (MPU9250) and grove barometer sensor (BMP180).
MPU-9250 is a 9-axis motion tracking device that combines a 3-axis gyroscope, 3-axis accelerometer, 3-axis
magnetometer and a Digital Motion Processor (DMP). BMP180 is a high precision, low power digital pressure
sensor. Hardware version: v1.1.

microblaze
Arduino – Microblaze processor instance used by this module.

get_accl()
Get the data from the accelerometer.

Returns A list of the acceleration data along X-axis, Y-axis, and Z-axis.

Return type list

2.8. pynq Package 149

Python productivity for Zynq (Pynq) Documentation, Release 2.0

get_altitude()
Get the current altitude.

Returns The altitude value.

Return type float

get_atm()
Get the current pressure in relative atmosphere.

Returns The related atmosphere.

Return type float

get_compass()
Get the data from the magnetometer.

Returns A list of the compass data along X-axis, Y-axis, and Z-axis.

Return type list

get_gyro()
Get the data from the gyroscope.

Returns A list of the gyro data along X-axis, Y-axis, and Z-axis.

Return type list

get_heading()
Get the value of the heading.

Returns The angle deviated from the X-axis, toward the positive Y-axis.

Return type float

get_pressure()
Get the current pressure in Pa.

Returns The pressure value.

Return type float

get_temperature()
Get the current temperature in degree C.

Returns The temperature value.

Return type float

get_tilt_heading()
Get the value of the tilt heading.

Returns The tilt heading value.

Return type float

reset()
Reset all the sensors on the grove IMU.

Returns

Return type None

150 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

pynq.lib.arduino.arduino_grove_ledbar Module

class pynq.lib.arduino.arduino_grove_ledbar.Grove_LEDbar(mb_info, gr_pin)
Bases: object

This class controls the Grove LED BAR.

Grove LED Bar is comprised of a 10 segment LED gauge bar and an MY9221 LED controlling chip. Model:
LED05031P. Hardware version: v2.0.

microblaze
Arduino – Microblaze processor instance used by this module.

read()
Reads the current status of LEDbar.

Reads the current status of LED bar and returns 10-bit binary string. Each bit position corresponds to a
LED position in the LEDbar, and bit value corresponds to the LED state.

Red LED corresponds to the LSB, while green LED corresponds to the MSB.

Returns String of 10 binary bits.

Return type str

reset()
Resets the LEDbar.

Clears the LED bar, sets all LEDs to OFF state.

Returns

Return type None

write_binary(data_in)
Set individual LEDs in the LEDbar based on 10 bit binary input.

Each bit in the 10-bit data_in points to a LED position on the LEDbar. Red LED corresponds to the LSB,
while green LED corresponds to the MSB.

Parameters data_in (int) – 10 LSBs of this parameter control the LEDbar.

Returns

Return type None

write_brightness(data_in, brightness=[170, 170, 170, 170, 170, 170, 170, 170, 170, 170])
Set individual LEDs with 3 level brightness control.

Each bit in the 10-bit data_in points to a LED position on the LEDbar. Red LED corresponds to the LSB,
while green LED corresponds to the MSB.

Brightness of each LED is controlled by the brightness parameter. There are 3 perceivable levels of bright-
ness: 0xFF : HIGH 0xAA : MED 0x01 : LOW

Parameters

• data_in (int) – 10 LSBs of this parameter control the LEDbar.

• brightness (list) – Each element controls a single LED.

Returns

Return type None

2.8. pynq Package 151

Python productivity for Zynq (Pynq) Documentation, Release 2.0

write_level(level, bright_level, green_to_red)
Set the level to which the leds are to be lit in levels 1 - 10.

Level can be set in both directions. set_level operates by setting all LEDs to the same brightness level.

There are 4 preset brightness levels: bright_level = 0: off bright_level = 1: low bright_level = 2: medium
bright_level = 3: maximum

green_to_red indicates the direction, either from red to green when it is 0, or green to red when it is 1.

Parameters

• level (int) – 10 levels exist, where 1 is minimum and 10 is maximum.

• bright_level (int) – Controls brightness of all LEDs in the LEDbar, from 0 to 3.

• green_to_red (int) – Sets the direction of the sequence.

Returns

Return type None

pynq.lib.arduino.arduino_grove_light Module

class pynq.lib.arduino.arduino_grove_light.Grove_Light(mb_info, gr_pin)
Bases: pynq.lib.arduino.arduino_grove_adc.Grove_ADC

This class controls the grove light sensor.

This class inherits from the Grove_ADC class. To use this module, grove ADC has to be used as a bridge. The
light sensor incorporates a Light Dependent Resistor (LDR) GL5528. Hardware version: v1.1.

microblaze
Arduino – Microblaze processor instance used by this module.

log_running
int – The state of the log (0: stopped, 1: started).

log_interval_ms
int – Time in milliseconds between sampled reads.

get_log()
Return list of logged light sensor resistances.

Returns List of valid light sensor resistances.

Return type list

read()
Read the light sensor resistance in from the light sensor.

This method overrides the definition in grove ADC.

Returns The light reading in terms of the sensor resistance.

Return type float

start_log()
Start recording the light sensor resistance in a log.

This method will call the start_log_raw() in the parent class.

Returns

Return type None

152 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

stop_log()
Stop recording light values in a log.

This method will call the stop_log_raw() in the parent class.

Returns

Return type None

pynq.lib.arduino.arduino_grove_oled Module

class pynq.lib.arduino.arduino_grove_oled.Grove_OLED(mb_info, gr_pin)
Bases: object

This class controls the Grove IIC OLED.

Grove LED 128x64 Display module is an OLED monochrome 128x64 matrix display module. Model:
OLE35046P. Hardware version: v1.1.

microblaze
Arduino – Microblaze processor instance used by this module.

clear()
Clear the OLED screen.

This is done by writing empty strings into the OLED in Microblaze.

Returns

Return type None

set_contrast(brightness)
Set the contrast level for the OLED display.

The contrast level is in [0, 255].

Parameters brightness (int) – The brightness of the display.

Returns

Return type None

set_horizontal_mode()
Set the display mode to horizontal.

Returns

Return type None

set_inverse_mode()
Set the display mode to inverse.

Returns

Return type None

set_normal_mode()
Set the display mode to normal.

Returns

Return type None

set_page_mode()
Set the display mode to paged.

2.8. pynq Package 153

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Returns

Return type None

set_position(row, column)
Set the position of the display.

The position is indicated by (row, column).

Parameters

• row (int) – The row number to start the display.

• column (int) – The column number to start the display.

Returns

Return type None

write(text)
Write a new text string on the OLED.

Clear the screen first to correctly show the new text.

Parameters text (str) – The text string to be displayed on the OLED screen.

Returns

Return type None

pynq.lib.arduino.arduino_grove_pir Module

class pynq.lib.arduino.arduino_grove_pir.Grove_PIR(mb_info, gr_pin)
Bases: pynq.lib.arduino.arduino_io.Arduino_IO

This class controls the PIR motion sensor.

Hardware version: v1.2.

microblaze
Arduino – Microblaze processor instance used by this module.

read()
Receive the value from the PIR sensor.

Returns 0 when there is no motion, and returns 1 otherwise.

Returns The data (0 or 1) read from the PIR sensor.

Return type int

pynq.lib.arduino.arduino_grove_th02 Module

class pynq.lib.arduino.arduino_grove_th02.Grove_TH02(mb_info, gr_pin)
Bases: object

This class controls the Grove I2C Temperature and Humidity sensor.

Temperature & humidity sensor (high-accuracy & mini). Hardware version: v1.0.

microblaze
Arduino – Microblaze processor instance used by this module.

154 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

log_running
int – The state of the log (0: stopped, 1: started).

log_interval_ms
int – Time in milliseconds between sampled reads.

get_log()
Return list of logged samples.

Returns List of tuples containing (temperature, humidity)

Return type list

read()
Read the temperature and humidity values from the TH02 peripheral.

Returns Tuple containing (temperature, humidity)

Return type tuple

start_log(log_interval_ms=100)
Start recording multiple heart rate values in a log.

This method will first call set the log interval before sending the command.

Parameters log_interval_ms (int) – The time between two samples in milliseconds.

Returns

Return type None

stop_log()
Stop recording the values in the log.

Simply send the command 0xC to stop the log.

Returns

Return type None

pynq.lib.arduino.arduino_grove_tmp Module

class pynq.lib.arduino.arduino_grove_tmp.Grove_TMP(mb_info, gr_pin, version=’v1.2’)
Bases: pynq.lib.arduino.arduino_grove_adc.Grove_ADC

This class controls the grove temperature sensor.

This class inherits from the Grove_ADC class. To use this module, grove ADC has to be used as a bridge. The
temperature sensor uses a thermistor to detect the ambient temperature. Hardware version: v1.2.

microblaze
Arduino – Microblaze processor instance used by this module.

log_running
int – The state of the log (0: stopped, 1: started).

log_interval_ms
int – Time in milliseconds between sampled reads.

bValue
int – The thermistor constant.

get_log()
Return list of logged temperature samples.

2.8. pynq Package 155

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Returns List of valid temperature readings from the temperature sensor.

Return type list

read()
Read temperature values in Celsius from temperature sensor.

This method overrides the definition in Grove_ADC.

Returns The temperature reading in Celsius.

Return type float

start_log()
Start recording temperature in a log.

This method will call the start_log_raw() in the parent class.

stop_log()
Stop recording temperature in a log.

This method will call the stop_log_raw() in the parent class.

Returns

Return type None

pynq.lib.arduino.arduino_io Module

class pynq.lib.arduino.arduino_io.Arduino_IO(mb_info, index, direction)
Bases: pynq.lib.arduino.arduino_devmode.Arduino_DevMode

This class controls the Arduino IO pins as inputs or outputs.

Note: The parameter ‘direction’ determines whether the instance is input/output: ‘in’ : receiving input from
offchip to onchip. ‘out’ : sending output from onchip to offchip.

Note: The index of the Arduino pins: upper row, from right to left: {0, 1, . . . , 13}. (D0 - D13) lower row, from
left to right: {14, 15,. . . , 19}. (A0 - A5)

microblaze
Arduino – Microblaze processor instance used by this module.

index
int – The index of the Arduino pin, from 0 to 19.

direction
str – Input ‘in’ or output ‘out’.

read()
Receive the value from the offboard Arduino IO device.

Note: Only use this function when direction is ‘in’.

Returns The data (0 or 1) on the specified Arduino IO pin.

Return type int

156 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

write(value)
Send the value to the offboard Arduino IO device.

Note: Only use this function when direction is ‘out’.

Parameters value (int) – The value to be written to the Arduino IO device.

Returns

Return type None

pynq.lib.arduino.arduino_lcd18 Module

class pynq.lib.arduino.arduino_lcd18.Arduino_LCD18(mb_info)
Bases: object

This class controls the Adafruit 1.8” LCD shield from AdaFruit.

The LCD panel consists of ST7735 LCD controller, a joystick, and a microSD socket. This class uses the
LCD panel (128x160 pixels) and the joystick. The joystick uses A3 analog channel. https://www.adafruit.com/
product/802.

microblaze
Arduino – Microblaze processor instance used by this module.

buf_manager
Xlnk – DDR management unit that provides the physical address of the image.

clear()
Clear the screen.

Returns

Return type None

display(img_path, x_pos=0, y_pos=127, orientation=3, background=None, frames=1)
Animate the image at the desired location for multiple frames.

The maximum screen resolution is 160x128.

Users can specify the position to display the image. For example, to display the image in the center, x_pos
can be (160-width/2), y_pos can be (128/2)+(height/2).

A typical orientation is 3. The origin of orientation 0, 1, 2, and 3 corresponds to upper right corner,
lower right corner, lower left corner, and upper left corner, respectively. Currently, only 1 and 3 are
valid orientations. If users choose orientation 1, the picture will be shown upside-down. If users choose
orientation 3, the picture will be shown consistently with the LCD screen orientation.

Parameter background specifies the color of the background; it is a list of 3 elements: R, G, and B, each
with 8 bits for color level.

Parameters

• img_path (str) – The file path to the image stored in the file system.

• x_pos (int) – x position of a pixel where the image starts.

• y_pos (int) – y position of a pixel where the image starts.

• background (list) – A list of [R, G, B] components for background, each of 8 bits.

2.8. pynq Package 157

https://www.adafruit.com/product/802
https://www.adafruit.com/product/802

Python productivity for Zynq (Pynq) Documentation, Release 2.0

• orientation (int) – orientation of the image; valid values are 1 and 3.

• frames (int) – Number of frames the image is moved, must be less than 65536.

Returns

Return type None

display_async(img_path, x_pos=0, y_pos=127, orientation=3, background=None, frames=1)
Animate the image at the desired location for multiple frames.

The maximum screen resolution is 160x128.

Users can specify the position to display the image. For example, to display the image in the center, x_pos
can be (160-width/2), y_pos can be (128/2)+(height/2).

A typical orientation is 3. The origin of orientation 0, 1, 2, and 3 corresponds to upper right corner,
lower right corner, lower left corner, and upper left corner, respectively. Currently, only 1 and 3 are
valid orientations. If users choose orientation 1, the picture will be shown upside-down. If users choose
orientation 3, the picture will be shown consistently with the LCD screen orientation.

Parameter background specifies the color of the background; it is a list of 3 elements: R, G, and B, each
with 8 bits for color level.

Parameters

• img_path (str) – The file path to the image stored in the file system.

• x_pos (int) – x position of a pixel where the image starts.

• y_pos (int) – y position of a pixel where the image starts.

• background (list) – A list of [R, G, B] components for background, each of 8 bits.

• orientation (int) – orientation of the image; valid values are 1 and 3.

• frames (int) – Number of frames the image is moved, must be less than 65536.

Returns

Return type None

draw_filled_rectangle(x_start_pos, y_start_pos, width, height, color=None, background=None,
orientation=3)

Draw a filled rectangle.

Parameter color specifies the color of the text; it is a list of 3 elements: R, G, and B, each with 8 bits for
color level.

Parameter background is similar to parameter color, except that it specifies the background color.

A typical orientation is 3. The origin of orientation 0, 1, 2, and 3 corresponds to upper right corner,
lower right corner, lower left corner, and upper left corner, respectively. Currently, only 1 and 3 are
valid orientations. If users choose orientation 1, the picture will be shown upside-down. If users choose
orientation 3, the picture will be shown consistently with the LCD screen orientation.

Parameters

• x_start_pos (int) – x position (in pixels) where the rectangle starts.

• y_start_pos (int) – y position (in pixels) where the rectangle starts.

• width (int) – Width of the rectangle (in pixels).

• height (int) – Height of the rectangle (in pixels).

• color (list) – A list of [R, G, B] components for line color, each of 8 bits.

158 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

• background (list) – A list of [R, G, B] components for background, each of 8 bits.

• orientation (int) – orientation of the image; valid values are 1 and 3.

Returns

Return type None

draw_line(x_start_pos, y_start_pos, x_end_pos, y_end_pos, color=None, background=None, orien-
tation=3)

Draw a line from starting point to ending point.

The maximum screen resolution is 160x128.

Parameter color specifies the color of the line; it is a list of 3 elements: R, G, and B, each with 8 bits for
color level.

Parameter background is similar to parameter color, except that it specifies the background color.

A typical orientation is 3. The origin of orientation 0, 1, 2, and 3 corresponds to upper right corner,
lower right corner, lower left corner, and upper left corner, respectively. Currently, only 1 and 3 are
valid orientations. If users choose orientation 1, the picture will be shown upside-down. If users choose
orientation 3, the picture will be shown consistently with the LCD screen orientation.

Parameters

• x_start_pos (int) – x position (in pixels) where the line starts.

• y_start_pos (int) – y position (in pixels) where the line starts.

• x_end_pos (int) – x position (in pixels) where the line ends.

• y_end_pos (int) – y position (in pixels) where the line ends.

• color (list) – A list of [R, G, B] components for line color, each of 8 bits.

• background (list) – A list of [R, G, B] components for background, each of 8 bits.

• orientation (int) – orientation of the image; valid values are 1 and 3.

Returns

Return type None

print_string(x_start_pos, y_start_pos, text, color=None, background=None, orientation=3)
Draw a character with a specific color.

The maximum screen resolution is 160x128.

Parameter color specifies the color of the text; it is a list of 3 elements: R, G, and B, each with 8 bits for
color level.

Parameter background is similar to parameter color, except that it specifies the background color.

A typical orientation is 3. The origin of orientation 0, 1, 2, and 3 corresponds to upper right corner,
lower right corner, lower left corner, and upper left corner, respectively. Currently, only 1 and 3 are
valid orientations. If users choose orientation 1, the picture will be shown upside-down. If users choose
orientation 3, the picture will be shown consistently with the LCD screen orientation.

Parameters

• x_start_pos (int) – x position (in pixels) where the line starts.

• y_start_pos (int) – y position (in pixels) where the line starts.

• text (str) – printable ASCII characters.

• color (list) – A list of [R, G, B] components for line color, each of 8 bits.

2.8. pynq Package 159

Python productivity for Zynq (Pynq) Documentation, Release 2.0

• background (list) – A list of [R, G, B] components for background, each of 8 bits.

• orientation (int) – orientation of the image; valid values are 1 and 3.

Returns

Return type None

read_joystick()
Read the joystick values.

The joystick values can be read when user is pressing the button toward a specific direction.

The returned values can be: 1: left; 2: down; 3: center; 4: right; 5: up; 0: no button pressed.

Returns Indicating the direction towards which the button is pushed.

Return type int

pynq.lib.pmod Package

The pynq.lib.pmod package is a collection of drivers for controlling peripherals attached to a PMOD port. The PMOD
interface can control PMOD peripherals or Grove peripherals (via the PYNQ Grove shield)

pynq.lib.pmod.pmod_adc Module

class pynq.lib.pmod.pmod_adc.Pmod_ADC(mb_info)
Bases: object

This class controls an Analog to Digital Converter Pmod.

The Pmod AD2 (PB 200-217) is an analog-to-digital converter powered by AD7991. Users may configure up
to 4 conversion channels at 12 bits of resolution.

microblaze
Pmod – Microblaze processor instance used by this module.

log_running
int – The state of the log (0: stopped, 1: started).

get_log()
Get the log of voltage values.

First stop the log before getting the log.

Returns List of voltage samples from the ADC.

Return type list

get_log_raw()
Get the log of raw values.

First stop the log before getting the log.

Returns List of raw samples from the ADC.

Return type list

read(ch1=1, ch2=0, ch3=0)
Get the voltage from the Pmod ADC.

When ch1, ch2, and ch3 values are 1 then the corresponding channel is included.

For each channel selected, this method reads and returns one sample.

160 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Note: The 4th channel is not available due to the jumper setting on ADC.

Note: This method reads the voltage values from ADC.

Parameters

• ch1 (int) – 1 means include channel 1, 0 means do not include.

• ch2 (int) – 1 means include channel 2, 0 means do not include.

• ch3 (int) – 1 means include channel 3, 0 means do not include.

Returns The voltage values read from the 3 channels of the Pmod ADC.

Return type list

read_raw(ch1=1, ch2=0, ch3=0)
Get the raw value from the Pmod ADC.

When ch1, ch2, and ch3 values are 1 then the corresponding channel is included.

For each channel selected, this method reads and returns one sample.

Note: The 4th channel is not available due to the jumper (JP1) setting on ADC.

Note: This method reads the raw value from ADC.

Parameters

• ch1 (int) – 1 means include channel 1, 0 means do not include.

• ch2 (int) – 1 means include channel 2, 0 means do not include.

• ch3 (int) – 1 means include channel 3, 0 means do not include.

Returns The raw values read from the 3 channels of the Pmod ADC.

Return type list

reset()
Reset the ADC.

Returns

Return type None

start_log(ch1=1, ch2=0, ch3=0, log_interval_us=100)
Start the log of voltage values with the interval specified.

This parameter log_interval_us can set the time interval between two samples, so that users can read out
multiple values in a single log.

Parameters

• ch1 (int) – 1 means include channel 1, 0 means do not include.

• ch2 (int) – 1 means include channel 2, 0 means do not include.

2.8. pynq Package 161

Python productivity for Zynq (Pynq) Documentation, Release 2.0

• ch3 (int) – 1 means include channel 3, 0 means do not include.

• log_interval_us (int) – The length of the log in milliseconds, for debug only.

Returns

Return type None

start_log_raw(ch1=1, ch2=0, ch3=0, log_interval_us=100)
Start the log of raw values with the interval specified.

This parameter log_interval_us can set the time interval between two samples, so that users can read out
multiple values in a single log.

Parameters

• ch1 (int) – 1 means include channel 1, 0 means do not include.

• ch2 (int) – 1 means include channel 2, 0 means do not include.

• ch3 (int) – 1 means include channel 3, 0 means do not include.

• log_interval_us (int) – The length of the log in milliseconds, for debug only.

Returns

Return type None

stop_log()
Stop the log of voltage values.

This is done by sending the reset command to IOP. There is no need to wait for the IOP.

Returns

Return type None

stop_log_raw()
Stop the log of raw values.

This is done by sending the reset command to IOP. There is no need to wait for the IOP.

Returns

Return type None

pynq.lib.pmod.pmod_als Module

class pynq.lib.pmod.pmod_als.Pmod_ALS(mb_info)
Bases: object

This class controls a light sensor Pmod.

The Digilent Pmod ALS demonstrates light-to-digital sensing through a single ambient light sensor. This is
based on an ADC081S021 analog-to-digital converter and a TEMT6000X01 ambient light sensor.

microblaze
Pmod – Microblaze processor instance used by this module.

log_interval_ms
int – Time in milliseconds between sampled reads.

get_log()
Return list of logged samples.

Returns

162 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Return type List of valid samples from the ALS sensor [0-255]

read()
Read current light value measured by the ALS Pmod.

Returns The current sensor value.

Return type int

set_log_interval_ms(log_interval_ms)
Set the length of the log in the ALS Pmod.

This method can set the length of the log, so that users can read out multiple values in a single log.

Parameters log_interval_ms (int) – The length of the log in milliseconds, for debug
only.

Returns

Return type None

start_log()
Start recording multiple values in a log.

This method will first call set_log_interval_ms() before sending the command.

Returns

Return type None

stop_log()
Stop recording multiple values in a log.

Simply send the command to stop the log.

Returns

Return type None

pynq.lib.pmod.pmod_cable Module

class pynq.lib.pmod.pmod_cable.Pmod_Cable(mb_info, index, direction, cable)
Bases: pynq.lib.pmod.pmod_io.Pmod_IO

This class can be used for a cable connecting Pmod interfaces.

This class inherits from the Pmod IO class.

Note: When 2 Pmods are connected using a cable, the parameter ‘cable’ decides whether the cable is a
‘loopback’ or ‘straight’ cable. The default is a straight cable (no internal wire twisting). For pin mapping,
please check the Pmod IO class.

microblaze
Pmod – Microblaze processor instance used by this module.

index
int – The index of the Pmod pin, from 0 to 7.

direction
str – Input ‘in’ or output ‘out’.

2.8. pynq Package 163

Python productivity for Zynq (Pynq) Documentation, Release 2.0

cable
str – Either ‘straight’ or ‘loopback’.

read()
Receive the value from the Pmod cable.

This method overrides the read() method in the Pmod IO class. There are no new write() method defined
in this class, so the read() will be inherited from Pmod IO class.

Note: Only use this function when direction = ‘in’.

When two Pmods are connected on the same board, for any received raw value, a “straignt” cable flips the
upper 4 pins and the lower 4 pins: A Pmod interface <=> Another Pmod interface {vdd,gnd,3,2,1,0} <=>
{vdd,gnd,7,6,5,4} {vdd,gnd,7,6,5,4} <=> {vdd,gnd,3,2,1,0}

A “loop-back” cable satisfies the following mapping between two Pmods: A Pmod interface <=> Another
Pmod interface {vdd,gnd,3,2,1,0} <=> {vdd,gnd,3,2,1,0} {vdd,gnd,7,6,5,4} <=> {vdd,gnd,7,6,5,4}

Returns The data (0 or 1) on the specified Pmod IO pin.

Return type int

set_cable(cable)
Set the type for the cable.

Note: The default cable type is ‘straight’. Only straight cable or loop-back cable can be recognized.

Parameters cable (str) – Either ‘straight’ or ‘loopback’.

Returns

Return type None

pynq.lib.pmod.pmod_dac Module

class pynq.lib.pmod.pmod_dac.Pmod_DAC(mb_info, value=None)
Bases: object

This class controls a Digital to Analog Converter Pmod.

The Pmod DA4 (PB 200-245) is an 8 channel 12-bit digital-to-analog converter run via AD5628.

microblaze
Pmod – Microblaze processor instance used by this module.

write(value)
Write a floating point number onto the DAC Pmod.

Note: Input value must be in the range [0.00, 2.50]

Parameters value (float) – The value to be written to the DAC.

Returns

Return type None

164 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

pynq.lib.pmod.pmod_dpot Module

class pynq.lib.pmod.pmod_dpot.Pmod_DPOT(mb_info)
Bases: object

This class controls a digital potentiometer Pmod.

The Pmod DPOT (PB 200-239) is a digital potentiometer powered by the AD5160. Users may set a desired
resistance between 60 ~ 10k ohms.

microblaze
Pmod – Microblaze processor instance used by this module.

write(val, step=0, log_ms=0)
Write the value into the DPOT.

This method will write the parameters “value”, “step”, and “log_ms” all together into the DPOT Pmod.
The parameter “log_ms” is only used for debug; users can ignore this parameter.

Parameters

• val (int) – The initial value to start, in [0, 255].

• step (int) – The number of steps when ramping up to the final value.

• log_ms (int) – The length of the log in milliseconds, for debug only.

Returns

Return type None

pynq.lib.pmod.pmod_iic Module

class pynq.lib.pmod.pmod_iic.Pmod_IIC(mb_info, scl_pin, sda_pin, iic_addr)
Bases: pynq.lib.pmod.pmod_devmode.Pmod_DevMode

This class controls the Pmod IIC pins.

Note: The index of the Pmod pins: upper row, from left to right: {vdd,gnd,3,2,1,0}. lower row, from left to
right: {vdd,gnd,7,6,5,4}.

microblaze
Pmod – Microblaze processor instance used by this module.

scl_pin
int – The SCL pin number.

sda_pin
int – The SDA pin number.

iic_addr
int – The IIC device address.

sr_addr
int – The IIC device SR address (base address + 0x104).

dtr_addr
int – The IIC device DTR address (base address + 0x108).

cr_addr
int – The IIC device CR address (base address + 0x100).

2.8. pynq Package 165

Python productivity for Zynq (Pynq) Documentation, Release 2.0

rfd_addr
int – The IIC device RFD address (base address + 0x120).

drr_addr
int – The IIC device DRR address (base address + 0x10C).

receive(num_bytes)
This method receives IIC bytes from the device.

Parameters num_bytes (int) – Number of bytes to be received from the device.

Returns iic_bytes – A list of 8-bit bytes received from the driver.

Return type list

Raises RuntimeError – Timeout when waiting for the RX FIFO to fill.

send(iic_bytes)
This method sends the command or data to the driver.

Parameters iic_bytes (list) – A list of 8-bit bytes to be sent to the driver.

Returns

Return type None

Raises RuntimeError – Timeout when waiting for the FIFO to be empty.

pynq.lib.pmod.pmod_io Module

class pynq.lib.pmod.pmod_io.Pmod_IO(mb_info, index, direction)
Bases: pynq.lib.pmod.pmod_devmode.Pmod_DevMode

This class controls the Pmod IO pins as inputs or outputs.

Note: The parameter ‘direction’ determines whether the instance is input/output: ‘in’ : receiving input from
offchip to onchip. ‘out’ : sending output from onchip to offchip. The index of the Pmod pins: upper row, from
left to right: {vdd,gnd,3,2,1,0}. lower row, from left to right: {vdd,gnd,7,6,5,4}.

microblaze
Pmod – Microblaze processor instance used by this module.

index
int – The index of the Pmod pin, starting from 0.

direction
str – Input ‘in’ or output ‘out’.

read()
Receive the value from the offboard Pmod IO device.

Note: Only use this function when direction is ‘in’.

Returns The data (0 or 1) on the specified Pmod IO pin.

Return type int

166 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

write(value)
Send the value to the offboard Pmod IO device.

Note: Only use this function when direction is ‘out’.

Parameters value (int) – The value to be written to the Pmod IO device.

Returns

Return type None

pynq.lib.pmod.pmod_led8 Module

class pynq.lib.pmod.pmod_led8.Pmod_LED8(mb_info, index)
Bases: pynq.lib.pmod.pmod_devmode.Pmod_DevMode

This class controls a single LED on the LED8 Pmod.

The Pmod LED8 (PB 200-163) has eight high-brightness LEDs. Each LED can be individually illuminated
from a logic high signal.

microblaze
Pmod – Microblaze processor instance used by this module.

iop_switch_config
list – Microblaze processor IO switch configuration (8 integers).

index
int – Index of the pin on LED8, starting from 0.

off()
Turn off a single LED.

Returns

Return type None

on()
Turn on a single LED.

Returns

Return type None

read()
Retrieve the LED state.

Returns The data (0 or 1) read out from the selected pin.

Return type int

toggle()
Flip the bit of a single LED.

Note: The LED will be turned off if it is on. Similarly, it will be turned on if it is off.

Returns

Return type None

2.8. pynq Package 167

Python productivity for Zynq (Pynq) Documentation, Release 2.0

write(value)
Set the LED state according to the input value

Note: This method does not take into account the current LED state.

Parameters value (int) – Turn on the LED if value is 1; turn it off if value is 0.

Returns

Return type None

pynq.lib.pmod.pmod_oled Module

class pynq.lib.pmod.pmod_oled.Pmod_OLED(mb_info, text=None)
Bases: object

This class controls an OLED Pmod.

The Pmod OLED (PB 200-222) is 128x32 pixel monochrome organic LED (OLED) panel powered by the
Solomon Systech SSD1306.

microblaze
Pmod – Microblaze processor instance used by this module.

clear()
Clear the OLED screen.

This is done by sending the clear command to the IOP.

Returns

Return type None

draw_line(x1, y1, x2, y2)
Draw a straight line on the OLED.

Parameters

• x1 (int) – The x-position of the starting point.

• y1 (int) – The y-position of the starting point.

• x2 (int) – The x-position of the ending point.

• y2 (int) – The y-position of the ending point.

Returns

Return type None

draw_rect(x1, y1, x2, y2)
Draw a rectangle on the OLED.

Parameters

• x1 (int) – The x-position of the starting point.

• y1 (int) – The y-position of the starting point.

• x2 (int) – The x-position of the ending point.

• y2 (int) – The y-position of the ending point.

168 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Returns

Return type None

write(text, x=0, y=0)
Write a new text string on the OLED.

Parameters

• text (str) – The text string to be displayed on the OLED screen.

• x (int) – The x-position of the display.

• y (int) – The y-position of the display.

Returns

Return type None

pynq.lib.pmod.pmod_pwm Module

class pynq.lib.pmod.pmod_pwm.Pmod_PWM(mb_info, index)
Bases: object

This class uses the PWM of the IOP.

microblaze
Pmod – Microblaze processor instance used by this module.

generate(period, duty_cycle)
Generate pwm signal with desired period and percent duty cycle.

Parameters

• period (int) – The period of the tone (us), between 1 and 65536.

• duty_cycle (int) – The duty cycle in percentage.

Returns

Return type None

stop()
Stops PWM generation.

Returns

Return type None

pynq.lib.pmod.pmod_tc1 Module

class pynq.lib.pmod.pmod_tc1.Pmod_TC1(mb_info)
Bases: object

This class controls a thermocouple Pmod.

The Digilent PmodTC1 is a cold-junction thermocouple-to-digital converter module designed for a classic K-
Type thermocouple wire. With Maxim Integrated’s MAX31855, this module reports the measured temperature
in 14-bits with 0.25 degC resolution.

microblaze
Pmod – Microblaze processor instance used by this module.

2.8. pynq Package 169

Python productivity for Zynq (Pynq) Documentation, Release 2.0

log_interval_ms
int – Time in milliseconds between sampled reads.

get_log()
Return list of logged samples.

Note: The logged samples are raw 32-bit samples captured from the sensor.

Returns List of valid samples from the TC1 sensor

Return type list

read_alarm_flags()
Read the alarm flags from the raw value.

Returns The alarm flags from the TC1. bit 0 = 1 if thermocouple connection is open-circuit; bit 1
= 1 if thermocouple connection is shorted to generated; bit 2 = 1 if thermocouple connection
is shorted to VCC; bit 16 = 1 if any if bits 0-2 are 1.

Return type u32

read_junction_temperature()
Read the reference junction temperature.

Returns The reference junction temperature in degC.

Return type float

read_raw()
Read full 32-bit register of TC1 Pmod.

Returns The current register contents.

Return type int

read_thermocouple_temperature()
Read the reference junction temperature.

Returns The thermocouple temperature in degC.

Return type float

set_log_interval_ms(log_interval_ms)
Set the length of the log in the TC1 Pmod.

This method can set the length of the log, so that users can read out multiple values in a single log.

Parameters log_interval_ms (int) – The length of the log in milliseconds, for debug
only.

Returns

Return type None

start_log()
Start recording multiple values in a log.

This method will first call set_log_interval_ms() before writting to the MMIO.

Returns

Return type None

170 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

stop_log()
Stop recording multiple values in a log.

Simply write to the MMIO to stop the log.

Returns

Return type None

pynq.lib.pmod.pmod_tc1.reg_to_alarms(reg_val)
Extracts Alarm flags from 32-bit register value.

Parameters reg_val (int) – 32-bit TC1 register value

Returns The alarm flags from the TC1. bit 0 = 1 if thermocouple connection is open-circuit; bit 1
= 1 if thermocouple connection is shorted to generated; bit 2 = 1 if thermocouple connection is
shorted to VCC; bit 16 = 1 if any if bits 0-2 are 1.

Return type u32

pynq.lib.pmod.pmod_tc1.reg_to_ref(reg_val)
Extracts Ref Junction temperature from 32-bit register value.

Parameters reg_val (int) – 32-bit TC1 register value

Returns The reference junction temperature in degC.

Return type float

pynq.lib.pmod.pmod_tc1.reg_to_tc(reg_val)
Extracts Thermocouple temperature from 32-bit register value.

Parameters reg_val (int) – 32-bit TC1 register value

Returns The thermocouple temperature in degC.

Return type float

pynq.lib.pmod.pmod_timer Module

class pynq.lib.pmod.pmod_timer.Pmod_Timer(mb_info, index)
Bases: object

This class uses the timer’s capture and generation capabilities.

microblaze
Pmod – Microblaze processor instance used by this module.

clk_period_ns
int – The clock period of the IOP in ns.

event_count(period)
Count the number of rising edges detected in (period) clocks.

Parameters period (int) – The period of the generated signals.

Returns The number of events detected.

Return type int

event_detected(period)
Detect a rising edge or high-level in (period) clocks.

Parameters period (int) – The period of the generated signals.

2.8. pynq Package 171

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Returns 1 if any event is detected, and 0 if no event is detected.

Return type int

generate_pulse(period, times=0)
Generate pulses every (period) clocks for a number of times.

The default is to generate pulses every (period) IOP clocks forever until stopped. The pulse width is equal
to the IOP clock period.

Parameters

• period (int) – The period of the generated signals.

• times (int) – The number of times for which the pulses are generated.

Returns

Return type None

get_period_ns()
Measure the period between two successive rising edges.

Returns Measured period in ns.

Return type int

stop()
This method stops the timer.

Returns

Return type None

pynq.lib.pmod.pmod_tmp2 Module

class pynq.lib.pmod.pmod_tmp2.Pmod_TMP2(mb_info)
Bases: object

This class controls a temperature sensor Pmod.

The Pmod TMP2 (PB 200-221) is an ambient temperature sensor powered by ADT7420.

microblaze
Pmod – Microblaze processor instance used by this module.

log_interval_ms
int – Time in milliseconds between sampled reads.

get_log()
Return list of logged samples.

Returns

Return type List of valid samples from the temperature sensor in Celsius.

read()
Read current temperature value measured by the Pmod TMP2.

Returns The current sensor value.

Return type float

set_log_interval_ms(log_interval_ms)
Set the sampling interval for the Pmod TMP2.

172 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Parameters log_interval_ms (int) – Time in milliseconds between sampled reads of the
TMP2 sensor

Returns

Return type None

start_log()
Start recording multiple values in a log.

This method will first call set_log_interval_ms() before writting to the MMIO.

Returns

Return type None

stop_log()
Stop recording multiple values in a log.

Simply write to the MMIO to stop the log.

Returns

Return type None

pynq.lib.pmod.pmod_grove_adc Module

class pynq.lib.pmod.pmod_grove_adc.Grove_ADC(mb_info, gr_pin)
Bases: object

This class controls the Grove IIC ADC.

Grove ADC is a 12-bit precision ADC module based on ADC121C021. Hardware version: v1.2.

microblaze
Pmod – Microblaze processor instance used by this module.

log_running
int – The state of the log (0: stopped, 1: started).

log_interval_ms
int – Time in milliseconds between sampled reads.

get_log()
Return list of logged samples.

Returns List of valid voltage samples (floats) from the ADC sensor.

Return type list

get_log_raw()
Return list of logged raw samples.

Returns List of valid raw samples from the ADC sensor.

Return type list

read()
Read the ADC voltage from the Grove ADC peripheral.

Returns The float value after translation.

Return type float

2.8. pynq Package 173

Python productivity for Zynq (Pynq) Documentation, Release 2.0

read_raw()
Read the ADC raw value from the Grove ADC peripheral.

Returns The raw value from the sensor.

Return type int

reset()
Resets/initializes the ADC.

Returns

Return type None

set_log_interval_ms(log_interval_ms)
Set the length of the log for the Grove ADC peripheral.

This method can set the time interval between two samples, so that users can read out multiple values in a
single log.

Parameters log_interval_ms (int) – The time between two samples in milliseconds, for
logging only.

Returns

Return type None

start_log()
Start recording multiple voltage values (float) in a log.

This method will first call set_log_interval_ms() before sending the command.

Returns

Return type None

start_log_raw()
Start recording raw data in a log.

This method will first call set_log_interval_ms() before sending the command.

Returns

Return type None

stop_log()
Stop recording the voltage values in the log.

Simply send the command 0xC to stop the log.

Returns

Return type None

stop_log_raw()
Stop recording the raw values in the log.

Simply send the command 0xC to stop the log.

Returns

Return type None

174 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

pynq.lib.pmod.pmod_grove_buzzer Module

class pynq.lib.pmod.pmod_grove_buzzer.Grove_Buzzer(mb_info, gr_pin)
Bases: object

This class controls the Grove Buzzer.

The grove buzzer module has a piezo buzzer as the main component. The piezo can be connected to digital
outputs, and will emit a tone when the output is HIGH. Alternatively, it can be connected to an analog pulse-
width modulation output to generate various tones and effects. Hardware version: v1.2.

microblaze
Pmod – Microblaze processor instance used by this module.

play_melody()
Play a melody.

Returns

Return type None

play_tone(tone_period, num_cycles)
Play a single tone with tone_period for num_cycles

Parameters

• tone_period (int) – The period of the tone in microsecond.

• num_cycles (int) – The number of cycles for the tone to be played.

Returns

Return type None

pynq.lib.pmod.pmod_grove_dlight Module

class pynq.lib.pmod.pmod_grove_dlight.Grove_Dlight(mb_info, gr_pin)
Bases: object

This class controls the Grove IIC color sensor.

Grove Color sensor based on the TCS3414CS. Hardware version: v1.3.

microblaze
Pmod – Microblaze processor instance used by this module.

read_lux()
Read the computed lux value of the sensor.

Returns The lux value from the sensor

Return type int

read_raw_light()
Read the visible and IR channel values.

Read the values from the grove digital light peripheral.

Returns A tuple containing 2 integer values ch0 (visible) and ch1 (IR).

Return type tuple

2.8. pynq Package 175

Python productivity for Zynq (Pynq) Documentation, Release 2.0

pynq.lib.pmod.pmod_grove_ear_hr Module

class pynq.lib.pmod.pmod_grove_ear_hr.Grove_EarHR(mb_info, gr_pin)
Bases: object

This class controls the Grove ear clip heart rate sensor.

Sensor model: MED03212P.

microblaze
Pmod – Microblaze processor instance used by this module.

read()
Read the heart rate from the sensor.

Returns The heart rate as beats per minute

Return type float

read_raw()
Read the number of heart beats.

Read the number of beats since the sensor initialization; also read the time elapsed in ms between the latest
two heart beats.

Returns Number of heart beats and the time elapsed between 2 latest beats.

Return type tuple

pynq.lib.pmod.pmod_grove_finger_hr Module

class pynq.lib.pmod.pmod_grove_finger_hr.Grove_FingerHR(mb_info, gr_pin)
Bases: object

This class controls the Grove finger clip heart rate sensor.

Grove Finger sensor based on the TCS3414CS. Hardware version: v1.3.

microblaze
Pmod – Microblaze processor instance used by this module.

log_running
int – The state of the log (0: stopped, 1: started).

log_interval_ms
int – Time in milliseconds between sampled reads.

get_log()
Return list of logged samples.

Returns List of integers containing the heart rate.

Return type list

read()
Read the heart rate value from the Grove Finger HR peripheral.

Returns An integer representing the heart rate frequency.

Return type int

176 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

start_log(log_interval_ms=100)
Start recording multiple heart rate values in a log.

This method will first call set the log interval before writing to the MMIO.

Parameters log_interval_ms (int) – The time between two samples in milliseconds.

Returns

Return type None

stop_log()
Stop recording the values in the log.

Simply write 0xC to the MMIO to stop the log.

Returns

Return type None

pynq.lib.pmod.pmod_grove_haptic_motor Module

class pynq.lib.pmod.pmod_grove_haptic_motor.Grove_HapticMotor(mb_info, gr_pin)
Bases: object

This class controls the Grove Haptic Motor based on the DRV2605L. Hardware version v0.9.

microblaze
Pmod – Microblaze processor instance used by this module.

is_playing()
Check if a vibration effect is running on the motor.

Returns True if a vibration effect is playing, false otherwise

Return type bool

play(effect)
Play a vibration effect on the Grove Haptic Motor peripheral.

Valid effect identifiers are in the range [1, 127].

Parameters effect (int) – An integer that specifies the effect.

Returns

Return type None

play_sequence(sequence)
Play a sequence of effects possibly separated by pauses.

At most 8 effects or pauses can be specified at a time. Pauses are defined using negative integer values in
the range [-1, -127] that correspond to a pause length in the range [10, 1270] ms

Valid effect identifiers are in the range [1, 127]

As an example, in the following sequence example: [4,-20,5] effect 4 is played and after a pause of 200
ms effect 5 is played

Parameters sequence (list) – At most 8 values specifying effects and pauses.

Returns

Return type None

2.8. pynq Package 177

Python productivity for Zynq (Pynq) Documentation, Release 2.0

stop()
Stop an effect or a sequence on the motor peripheral.

Returns

Return type None

pynq.lib.pmod.pmod_grove_imu Module

class pynq.lib.pmod.pmod_grove_imu.Grove_IMU(mb_info, gr_pin)
Bases: object

This class controls the Grove IIC IMU.

Grove IMU 10DOF is a combination of grove IMU 9DOF (MPU9250) and grove barometer sensor (BMP180).
MPU-9250 is a 9-axis motion tracking device that combines a 3-axis gyroscope, 3-axis accelerometer, 3-axis
magnetometer and a Digital Motion Processor (DMP). BMP180 is a high precision, low power digital pressure
sensor. Hardware version: v1.1.

microblaze
Pmod – Microblaze processor instance used by this module.

get_accl()
Get the data from the accelerometer.

Returns A list of the acceleration data along X-axis, Y-axis, and Z-axis.

Return type list

get_altitude()
Get the current altitude.

Returns The altitude value.

Return type float

get_atm()
Get the current pressure in relative atmosphere.

Returns The related atmosphere.

Return type float

get_compass()
Get the data from the magnetometer.

Returns A list of the compass data along X-axis, Y-axis, and Z-axis.

Return type list

get_gyro()
Get the data from the gyroscope.

Returns A list of the gyro data along X-axis, Y-axis, and Z-axis.

Return type list

get_heading()
Get the value of the heading.

Returns The angle deviated from the X-axis, toward the positive Y-axis.

Return type float

178 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

get_pressure()
Get the current pressure in Pa.

Returns The pressure value.

Return type float

get_temperature()
Get the current temperature in degree C.

Returns The temperature value.

Return type float

get_tilt_heading()
Get the value of the tilt heading.

Returns The tilt heading value.

Return type float

reset()
Reset all the sensors on the grove IMU.

Returns

Return type None

pynq.lib.pmod.pmod_grove_ledbar Module

class pynq.lib.pmod.pmod_grove_ledbar.Grove_LEDbar(mb_info, gr_pin)
Bases: object

This class controls the Grove LED BAR.

Grove LED Bar is comprised of a 10 segment LED gauge bar and an MY9221 LED controlling chip. Model:
LED05031P. Hardware version: v2.0.

microblaze
Pmod – Microblaze processor instance used by this module.

read()
Reads the current status of LEDbar.

Reads the current status of LED bar and returns 10-bit binary string. Each bit position corresponds to a
LED position in the LEDbar, and bit value corresponds to the LED state.

Red LED corresponds to the LSB, while green LED corresponds to the MSB.

Returns String of 10 binary bits.

Return type str

reset()
Resets the LEDbar.

Clears the LED bar, sets all LEDs to OFF state.

Returns

Return type None

write_binary(data_in)
Set individual LEDs in the LEDbar based on 10 bit binary input.

2.8. pynq Package 179

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Each bit in the 10-bit data_in points to a LED position on the LEDbar. Red LED corresponds to the LSB,
while green LED corresponds to the MSB.

Parameters data_in (int) – 10 LSBs of this parameter control the LEDbar.

Returns

Return type None

write_brightness(data_in, brightness=[170, 170, 170, 170, 170, 170, 170, 170, 170, 170])
Set individual LEDs with 3 level brightness control.

Each bit in the 10-bit data_in points to a LED position on the LEDbar. Red LED corresponds to the LSB,
while green LED corresponds to the MSB.

Brightness of each LED is controlled by the brightness parameter. There are 3 perceivable levels of bright-
ness: 0xFF : HIGH 0xAA : MED 0x01 : LOW

Parameters

• data_in (int) – 10 LSBs of this parameter control the LEDbar.

• brightness (list) – Each element controls a single LED.

Returns

Return type None

write_level(level, bright_level, green_to_red)
Set the level to which the leds are to be lit in levels 1 - 10.

Level can be set in both directions. set_level operates by setting all LEDs to the same brightness level.

There are 4 preset brightness levels: bright_level = 0: off bright_level = 1: low bright_level = 2: medium
bright_level = 3: maximum

green_to_red indicates the direction, either from red to green when it is 0, or green to red when it is 1.

Parameters

• level (int) – 10 levels exist, where 1 is minimum and 10 is maximum.

• bright_level (int) – Controls brightness of all LEDs in the LEDbar, from 0 to 3.

• green_to_red (int) – Sets the direction of the sequence.

Returns

Return type None

pynq.lib.pmod.pmod_grove_light Module

class pynq.lib.pmod.pmod_grove_light.Grove_Light(mb_info, gr_pin)
Bases: pynq.lib.pmod.pmod_grove_adc.Grove_ADC

This class controls the grove light sensor.

This class inherits from the grove ADC class. To use this module, grove ADC has to be used as a bridge. The
light sensor incorporates a Light Dependent Resistor (LDR) GL5528. Hardware version: v1.1.

microblaze
Pmod – Microblaze processor instance used by this module.

log_running
int – The state of the log (0: stopped, 1: started).

180 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

log_interval_ms
int – Time in milliseconds between sampled reads.

get_log()
Return list of logged light sensor resistances.

Returns List of valid light sensor resistances.

Return type list

read()
Read the light sensor resistance in from the light sensor.

This method overrides the definition in grove ADC.

Returns The light reading in terms of the sensor resistance.

Return type float

start_log()
Start recording the light sensor resistance in a log.

This method will call the start_log_raw() in the parent class.

Returns

Return type None

stop_log()
Stop recording light values in a log.

This method will call the stop_log_raw() in the parent class.

Returns

Return type None

pynq.lib.pmod.pmod_grove_oled Module

class pynq.lib.pmod.pmod_grove_oled.Grove_OLED(mb_info, gr_pin)
Bases: object

This class controls the Grove IIC OLED.

Grove LED 128×64 Display module is an OLED monochrome 128×64 matrix display module. Model:
OLE35046P. Hardware version: v1.1.

microblaze
Pmod – Microblaze processor instance used by this module.

clear()
Clear the OLED screen.

This is done by writing empty strings into the OLED in Microblaze.

Returns

Return type None

set_contrast(brightness)
Set the contrast level for the OLED display.

The contrast level is in [0, 255].

Parameters brightness (int) – The brightness of the display.

2.8. pynq Package 181

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Returns

Return type None

set_horizontal_mode()
Set the display mode to horizontal.

Returns

Return type None

set_inverse_mode()
Set the display mode to inverse.

Returns

Return type None

set_normal_mode()
Set the display mode to normal.

Returns

Return type None

set_page_mode()
Set the display mode to paged.

Returns

Return type None

set_position(row, column)
Set the position of the display.

The position is indicated by (row, column).

Parameters

• row (int) – The row number to start the display.

• column (int) – The column number to start the display.

Returns

Return type None

write(text)
Write a new text string on the OLED.

Clear the screen first to correctly show the new text.

Parameters text (str) – The text string to be displayed on the OLED screen.

Returns

Return type None

pynq.lib.pmod.pmod_grove_pir Module

class pynq.lib.pmod.pmod_grove_pir.Grove_PIR(mb_info, gr_pin)
Bases: pynq.lib.pmod.pmod_io.Pmod_IO

This class controls the PIR motion sensor.

Hardware version: v1.2.

182 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

microblaze
Pmod – Microblaze processor instance used by this module.

index
int – The index of the Pmod pin, from 0 to 7.

direction
str – Can only be ‘in’ for PIR sensor.

read()
Receive the value from the PIR sensor.

Returns 0 when there is no motion, and returns 1 otherwise.

Returns The data (0 or 1) read from the PIR sensor.

Return type int

pynq.lib.pmod.pmod_grove_th02 Module

class pynq.lib.pmod.pmod_grove_th02.Grove_TH02(mb_info, gr_pin)
Bases: object

This class controls the Grove I2C Temperature and Humidity sensor.

Temperature & humidity sensor (high-accuracy & mini). Hardware version: v1.0.

microblaze
Pmod – Microblaze processor instance used by this module.

log_running
int – The state of the log (0: stopped, 1: started).

log_interval_ms
int – Time in milliseconds between sampled reads.

get_log()
Return list of logged samples.

Returns List of tuples containing (temperature, humidity)

Return type list

read()
Read the temperature and humidity values from the TH02 peripheral.

Returns Tuple containing (temperature, humidity)

Return type tuple

start_log(log_interval_ms=100)
Start recording multiple heart rate values in a log.

This method will first call set the log interval before sending the command.

Parameters log_interval_ms (int) – The time between two samples in milliseconds.

Returns

Return type None

stop_log()
Stop recording the values in the log.

Simply send the command 0xC to stop the log.

2.8. pynq Package 183

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Returns

Return type None

pynq.lib.pmod.pmod_grove_tmp Module

class pynq.lib.pmod.pmod_grove_tmp.Grove_TMP(mb_info, gr_pin, version=’v1.2’)
Bases: pynq.lib.pmod.pmod_grove_adc.Grove_ADC

This class controls the grove temperature sensor.

This class inherits from the Grove_ADC class. To use this module, grove ADC has to be used as a bridge. The
temperature sensor uses a thermistor to detect the ambient temperature. Hardware version: v1.2.

microblaze
Pmod – Microblaze processor instance used by this module.

log_running
int – The state of the log (0: stopped, 1: started).

log_interval_ms
int – Time in milliseconds between sampled reads.

bValue
int – The thermistor constant.

get_log()
Return list of logged temperature samples.

Returns List of valid temperature readings from the temperature sensor.

Return type list

read()
Read temperature values in Celsius from temperature sensor.

This method overrides the definition in Grove_ADC.

Returns The temperature reading in Celsius.

Return type float

start_log()
Start recording temperature in a log.

This method will call the start_log_raw() in the parent class.

stop_log()
Stop recording temperature in a log.

This method will call the stop_log_raw() in the parent class.

Returns

Return type None

184 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

pynq.lib.logictools Package

pynq.lib.logictools.boolean_generator Module

class pynq.lib.logictools.boolean_generator.BooleanGenerator(mb_info,
intf_spec_name=’PYNQZ1_LOGICTOOLS_SPECIFICATION’)

Bases: object

Class for the Boolean generator.

This class can implement any combinational function on user IO pins. Since each LUT5 takes 5 inputs, the basic
function that users can implement is 5-input, 1-output boolean function. However, by concatenating multiple
LUT5 together, users can implement complex boolean functions.

There are 20 5-LUTs, so users can implement at most 20 basic boolean functions at a specific time.

logictools_controller
LogicToolsController – The generator controller for this class.

intf_spec
dict – The interface specification, e.g., PYNQZ1_LOGICTOOLS_SPECIFICATION.

expressions
list/dict – The boolean expressions, each expression being a string.

waveforms
dict – A dictionary storing the waveform objects for display purpose.

input_pins
list – A list of input pins used by the generator.

output_pins
list – A list of output pins used by the generator.

analyzer
TraceAnalyzer – Analyzer to analyze the raw capture from the pins.

num_analyzer_samples
int – Number of analyzer samples to capture.

frequency_mhz
float – The frequency of the captured samples, in MHz.

analyze()
Update the captured samples.

This method updates the captured samples from the trace analyzer. It is required after each step() / run()

clear_wave()
Clear the waveform object so new patterns can be accepted.

This function is required after each stop().

connect()
Method to configure the IO switch.

Usually this method should only be used internally. Users only need to use run() method.

disconnect()
Method to disconnect the IO switch.

Usually this method should only be used internally. Users only need to use stop() method.

2.8. pynq Package 185

Python productivity for Zynq (Pynq) Documentation, Release 2.0

reset()
Reset the boolean generator.

This method will bring the generator from any state to ‘RESET’ state.

run()
Run the boolean generator.

The method will first collects the pins used and sends the list to Microblaze for handling. Then it will start
to run the boolean generator.

setup(expressions, frequency_mhz=10)
Configure the generator with new boolean expression.

This method will bring the generator from ‘RESET’ to ‘READY’ state.

Parameters

• expressions (list/dict) – The boolean expression to be configured.

• frequency_mhz (float) – The frequency of the captured samples, in MHz.

show_waveform()
Display the boolean logic generator in a Jupyter notebook.

A wavedrom waveform is shown with all inputs and outputs displayed.

status
Return the generator’s status.

Returns Indicating the current status of the generator; can be ‘RESET’, ‘READY’, or ‘RUN-
NING’.

Return type str

step()
Step the boolean generator.

The method will first collects the pins used and sends the list to Microblaze for handling. Then it will start
to step the boolean generator.

stop()
Stop the boolean generator.

This method will stop the currently running boolean generator.

trace(use_analyzer=True, num_analyzer_samples=128)
Configure the trace analyzer.

By default, the trace analyzer is always on, unless users explicitly disable it.

Parameters

• use_analyzer (bool) – Whether to use the analyzer to capture the trace.

• num_analyzer_samples (int) – The number of analyzer samples to capture.

pynq.lib.logictools.fsm_generator Module

class pynq.lib.logictools.fsm_generator.FSMGenerator(mb_info,
intf_spec_name=’PYNQZ1_LOGICTOOLS_SPECIFICATION’)

Bases: object

Class for Finite State Machine generator.

186 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

This class enables users to specify a Finite State Machine (FSM). Users have to provide a FSM in the following
format.

fsm_spec = {‘inputs’: [(‘reset’,’D0’), (‘direction’,’D1’)],

‘outputs’: [(‘alpha’,’D3’), (‘beta’,’D4’), (‘gamma’,’D5’)],

‘states’: (‘S0’, ‘S1’, ‘S2’, ‘S3’, ‘S4’, ‘S5’),

‘transitions’: [[‘00’, ‘S0’, ‘S1’, ‘000’],

[‘01’, ‘S0’, ‘S5’, ‘000’],

[‘00’, ‘S1’, ‘S2’, ‘001’],

[‘01’, ‘S1’, ‘S0’, ‘001’],

[‘00’, ‘S2’, ‘S3’, ‘010’],

[‘01’, ‘S2’, ‘S1’, ‘010’],

[‘00’, ‘S3’, ‘S4’, ‘011’],

[‘01’, ‘S3’, ‘S2’, ‘011’],

[‘00’, ‘S4’, ‘S5’, ‘100’],

[‘01’, ‘S4’, ‘S3’, ‘100’],

[‘00’, ‘S5’, ‘S0’, ‘101’],

[‘01’, ‘S5’, ‘S4’, ‘101’],

[‘1-‘, ‘*’, ‘S0’, ‘’]]}

The current implementation assumes Moore machine, so the output is decided by the current state. Hence, if a
wildcard * is specified for the current state, users can just set the output to be empty.

logictools_controller
LogicToolsController – The generator controller for this class.

intf_spec
dict – The interface specification, e.g., PYNQZ1_LOGICTOOLS_SPECIFICATION.

fsm_spec
dict – The FSM specification, with inputs (list), outputs (list), states (list), and transitions (list).

num_input_bits
int – The number of input bits / pins.

num_outputs
int – The number of possible FSM outputs specified by users.

num_output_bits
int – The number of bits used for the FSM outputs.

num_states
int – The number of FSM states specified by users.

num_state_bits
int – The number of bits used for the FSM states.

state_names
list – List of state names specified by the users.

transitions
int – Transition list with all the wildcards replaced properly.

2.8. pynq Package 187

Python productivity for Zynq (Pynq) Documentation, Release 2.0

input_pins
list – List of input pins on Arduino header.

output_pins
list – List of output pins on Arduino header.

use_state_bits
bool – Flag indicating whether the state bits are shown on output pins.

analyzer
TraceAnalyzer – Analyzer to analyze the raw capture from the pins.

num_analyzer_samples
int – The number of analyzer samples to capture.

frequency_mhz
float – The frequency of the running FSM / captured samples, in MHz.

waveform
Waveform – The Waveform object used for Wavedrom display.

analyze()
Update the captured samples.

This method updates the captured samples from the trace analyzer. It is required after each step() / run().

clear_wave()
Clear the waveform object so new patterns can be accepted.

This function is required after each stop().

connect()
Method to configure the IO switch.

Usually this method should only be used internally. Users only need to use run() method.

disconnect()
Method to disconnect the IO switch.

Usually this method should only be used internally. Users only need to use stop() method.

reset()
Reset the FSM generator.

This method will bring the generator from any state to ‘RESET’ state.

run()
Run the FSM generator.

The method will first collects the pins used and sends the list to Microblaze for handling. Then it will start
to run the FSM generator.

setup(fsm_spec, use_state_bits=False, frequency_mhz=10)
Configure the programmable FSM generator.

This method will configure the FSM based on supplied configuration specification. Users can send the
samples to PatternAnalyzer for additional analysis.

Parameters

• fsm_spec (dict) – The FSM specification, with inputs (list), outputs (list), states (list),
and transitions (list).

• use_state_bits (bool) – Whether to check the state bits in the final output pins.

• frequency_mhz (float) – The frequency of the FSM and captured samples, in MHz.

188 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

show_state_diagram(file_name=’fsm_spec.png’, save_png=False)
Display the state machine in Jupyter notebook.

This method uses the installed package pygraphviz. References: http://pygraphviz.github.io/
documentation/latest/pygraphviz.pdf

A PNG file of the state machine will also be saved into the current working directory.

Parameters

• file_name (str) – The name / path of the picture for the FSM diagram.

• save_png (bool) – Whether to save the PNG showing the state diagram.

show_waveform()
Display the waveform.

This method requires the waveform class to be present. Also, javascripts will be copied into the current
directory.

status
Return the generator’s status.

Returns Indicating the current status of the generator; can be ‘RESET’, ‘READY’, or ‘RUN-
NING’.

Return type str

step()
Step the FSM generator.

The method will first collects the pins used and sends the list to Microblaze for handling. Then it will start
to step the FSM generator.

stop()
Stop the FSM generator.

This command will stop the pattern generated from FSM.

trace(use_analyzer=True, num_analyzer_samples=128)
Configure the trace analyzer.

By default, the trace analyzer is always on, unless users explicitly disable it.

Parameters

• use_analyzer (bool) – Whether to use the analyzer to capture the trace.

• num_analyzer_samples (int) – The number of analyzer samples to capture.

pynq.lib.logictools.fsm_generator.check_duplicate(fsm_spec, key)
Function to check duplicate entries in a nested dictionary.

This method will check the entry indexed by key in a dictionary. An exception will be raised if there are
duplicated entries.

Parameters

• fsm_spec (dict) – The dictionary where the check to be made.

• key (object) – The key to index the dictionary.

pynq.lib.logictools.fsm_generator.check_moore(num_states, num_outputs)
Check whether the specified state machine is a moore machine.

This method will raise an exception if there are more state outputs than the number of states.

2.8. pynq Package 189

http://pygraphviz.github.io/documentation/latest/pygraphviz.pdf
http://pygraphviz.github.io/documentation/latest/pygraphviz.pdf

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Parameters

• num_states (int) – The number of bits used for states.

• num_outputs (int) – The number of state outputs.

pynq.lib.logictools.fsm_generator.check_num_bits(num_bits, label, minimum=0, maxi-
mum=32)

Check whether the number of bits are still in a valid range.

This method will raise an exception if num_bits is out of range.

Parameters

• num_bits (int) – The number of bits of a specific field.

• label (str) – The label of the field.

• minimum (int) – The minimum number of bits allowed in that field.

• maximum (int) – The maximum number of bits allowed in that field.

pynq.lib.logictools.fsm_generator.check_pin_conflict(pins1, pins2)
Function to check whether there is conflict between input / output pins.

This method will raise an exception if there are pins specified in both inputs and outputs.

Parameters

• pins1 (list) – The list of the first set of pins.

• pins2 (list) – The list of the second set of pins.

pynq.lib.logictools.fsm_generator.check_pins(fsm_spec, key, intf_spec)
Check whether the pins specified are in a valid range.

This method will raise an exception if pin is out of range.

Parameters

• fsm_spec (dict) – The dictionary where the check to be made.

• key (object) – The key to index the dictionary.

• intf_spec (dict) – An interface spec containing the pin map.

pynq.lib.logictools.fsm_generator.expand_transition(transition, input_list)
Add new (partially) expanded state transition.

Parameters

• transition (list) – Specifies a state transition.

• input_list (list) – List of inputs, where each input is a string.

Returns New (partially) expanded state transition.

Return type list

pynq.lib.logictools.fsm_generator.get_bram_addr_offsets(num_states,
num_input_bits)

Get address offsets from given number of states and inputs.

This method returns the index offset for input bits. For example, if less than 32 states are used, then the index
offset will be 5. If the number of states used is greater than 32 but less than 64, then the index offset will be 6.

This method also returns the address offsets for BRAM data. The returned list contains 2**‘num_input_bits‘
offsets. The distance between 2 address offsets is 2**‘index_offset‘.

190 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Parameters

• num_states (int) – The number of states in the state machine.

• num_input_bits (int) – The number of inputs in the state machine.

Returns A list of 2**‘num_input_bits‘ offsets.

Return type int, list

pynq.lib.logictools.fsm_generator.merge_to_length(a, b, length)
Merge 2 lists into a specific length.

This method will merge 2 lists into a short list, replacing the last few items of the first list if necessary.

For example, a = [1,2,3], b = [4,5,6,7], and length = 6. The result will be [1,2,4,5,6,7]. If length = 5, the result
will be [1,4,5,6,7]. If length is greater or equal to 7, the result will be [1,2,3,4,5,6,7].

Parameters

• a (list) – A list of elements.

• b (list) – Another list of elements.

• length (int) – The length of the result list.

Returns A merged list of the specified length.

Return type list

pynq.lib.logictools.fsm_generator.replace_wildcard(input_list)
Method to replace a wildcard - in the input values.

This method will replace the wildcard - in the input list; the returned two lists have different values on the
position of -.

Example: [‘0’, ‘-‘, ‘1’] => ([‘0’, ‘0’, ‘1’], [‘0’, ‘1’, ‘1’])

Parameters input_list (list) – A list of multiple values, possibly with - inside.

Returns Two lists differ by the location of -.

Return type list,list

pynq.lib.logictools.pattern_generator Module

class pynq.lib.logictools.pattern_generator.PatternGenerator(mb_info,
intf_spec_name=’PYNQZ1_LOGICTOOLS_SPECIFICATION’)

Bases: object

Class for the Pattern generator.

This class can generate digital IO patterns / stimulus on output pins. Users can specify whether to use a pin as
input or output.

logictools_controller
LogicToolsController – The generator controller for this class.

intf_spec
dict – The interface specification, e.g., PYNQZ1_LOGICTOOLS_SPECIFICATION.

stimulus_group
dict – A group of stimulus wavelanes.

stimulus_group_name
str – The name of the stimulus wavelanes.

2.8. pynq Package 191

Python productivity for Zynq (Pynq) Documentation, Release 2.0

stimulus_names
list – The list of all the stimulus wavelane names, each name being a string.

stimulus_pins
list – The list of all the stimulus wavelane pin labels, each pin label being a string.

stimulus_waves
list – The list of all the stimulus wavelane waves, each wave being a string consisting of wavelane tokens.

analysis_group
dict – A group of analysis wavelanes.

analysis_group_name
str – The name of the analysis wavelanes.

analysis_names
list – The list of all the analysis wavelane names, each name being a string.

analysis_pins
list – The list of all the analysis wavelane pin labels, each pin label being a string.

src_samples
numpy.ndarray – The numpy array storing the stimuli, each sample being 32 bits.

dst_samples
numpy.ndarray – The numpy array storing the response, each sample being 64 bits.

waveform_dict
dict – A dictionary storing the patterns in WaveJason format.

waveform
Waveform – The Waveform object used for Wavedrom display.

analyzer
TraceAnalyzer – Analyzer to analyze the raw capture from the pins.

num_analyzer_samples
int – The number of analyzer samples to capture.

frequency_mhz
float – The frequency of the running generator / captured samples, in MHz.

analyze()
Update the captured samples.

This method updates the captured samples from the trace analyzer. It is required after each step() / run()

clear_wave()
Clear the waveform object so new patterns can be accepted.

This function is required after each stop().

connect()
Method to configure the IO switch.

Usually this method should only be used internally. Users only need to use run() method.

disconnect()
Method to disconnect the IO switch.

Usually this method should only be used internally. Users only need to use stop() method.

longest_wave
Return the name of the longest wave.

192 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Will only be changed by internal method.

max_wave_length
Return the maximum wave length

Will only be changed by internal method.

reset()
Reset the pattern generator.

This method will bring the generator from any state to ‘RESET’ state.

run()
Run the pattern generation.

The method will first collects the pins used and sends the list to Microblaze for handling. Then it will start
to run the pattern generator.

setup(waveform_dict, stimulus_group_name=None, analysis_group_name=None, mode=’single’, fre-
quency_mhz=10)

Configure the pattern generator with a single bit pattern.

Generates a bit pattern for a single shot operation at specified IO pins with the specified number of samples.

Each bit of the 20-bit patterns, from LSB to MSB, corresponds to: D0, D1, . . . , D13, A0, A1, . . . , A5,
respectively.

Note the all the lanes should have the same number of samples. And the token inside wave are already
converted into bit string.

Users can ignore the returned data in case only the pattern generator is required.

Mode single means the pattern will be generated only once, while mode multiple means the pattern will be
generated repeatedly.

Parameters

• waveform_dict (dict) – Waveform dictionary in WaveJSON format.

• stimulus_group_name (str) – Name of the WaveLane group for the stimulus if
used.

• analysis_group_name (str) – Name of the WaveLane group for the analysis if
used.

• mode (str) – Mode of the pattern generator, can be single or multiple.

• frequency_mhz (float) – The frequency of the captured samples, in MHz.

show_waveform()
Display the waveform in Jupyter notebook.

This method requires the waveform class to be present. At the same time, javascripts will be copied into
the current directory.

status
Return the generator’s status.

Returns Indicating the current status of the generator; can be ‘RESET’, ‘READY’, or ‘RUN-
NING’.

Return type str

step()
Step the pattern generator.

2.8. pynq Package 193

Python productivity for Zynq (Pynq) Documentation, Release 2.0

The method will first collects the pins used and sends the list to Microblaze for handling. Then it will start
to step the pattern generator.

stop()
Stop the pattern generation.

This method will stop the currently running pattern generator.

trace(use_analyzer=True, num_analyzer_samples=128)
Configure the trace analyzer.

By default, the trace analyzer is always on, unless users explicitly disable it.

Parameters

• use_analyzer (bool) – Whether to use the analyzer to capture the trace.

• num_analyzer_samples (int) – The number of analyzer samples to capture.

pynq.lib.logictools.trace_analyzer Module

class pynq.lib.logictools.trace_analyzer.TraceAnalyzer(ip_info,
intf_spec_name=’PYNQZ1_LOGICTOOLS_SPECIFICATION’)

Bases: object

Class for trace analyzer.

This class can capture digital IO patterns / stimulus on monitored pins.

This class can wrap one out of the two classes: (1) the Microblaze controlled trace analyzer, or (2) the PS
controlled trace analyzer.

To use the PS controlled trace analyzer, users can set the ip_info to a dictionary containing the corresponding IP
name; for example:

>>> ip_info = {'trace_cntrl':'trace_analyzer_pmoda/trace_cntrl_0',
'trace_dma': 'trace_analyzer_pmoda/axi_dma_0'}

Otherwise the Microblaze controlled trace analyzer will be used. By default, the Microblaze controlled version
will be used, and the interface specification name will be set to PYNQZ1_LOGICTOOLS_SPECIFICATION.

Most of the methods implemented inside this class assume the protocol is known, so the pattern can be decoded
and added to the annotation of the waveforms.

In case the protocol is unknown, users should refrain from using these methods.

Two files are maintained by this class: the csv file, which is human readable; and the sr file, which is sigrok
readable.

analyze(steps=0)
Analyze the captured pattern.

This function will process the captured pattern and put the pattern into a Wavedrom compatible format.

The data output is of format:

[{‘name’: ‘’, ‘pin’: ‘D1’, ‘wave’: ‘1. . . 0.’}, {‘name’: ‘’, ‘pin’: ‘D2’, ‘wave’: ‘0.1..01.01’}]

Note the all the lanes should have the same number of samples. All the pins are assumed to be tri-stated
and traceable.

Currently only no step() method is supported for PS controlled trace analyzer.

194 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Parameters steps (int) – Number of samples to analyze. A value 0 means to analyze all the
valid samples.

Returns A list of dictionaries, each dictionary consisting the pin number, and the waveform
pattern in string format.

Return type list

decode(trace_csv, start_pos, stop_pos, decoded_file, options=”)
Parse CSV file, add metadata, and use sigrok to decode transactions.

Internally, this method is calling save_csv(), set_metadata(), and sigrok_decode() methods.

Parameters

• trace_csv (str) – Name of the output file (*.csv) which can be opened in text editor.

• start_pos (int) – Starting sample number, no less than 1.

• stop_pos (int) – Stopping sample number, no more than the maximum number of
samples.

• decoded_file (str) – Name of the output file, which can be opened in text editor.

• options (str) – Additional options to be passed to sigrok-cli.

Returns

Return type None

get_transactions()
List all the transactions captured.

The transaction list will only be non-empty after users have run decode() method. An exception will be
raised if the transaction is empty, or the text file cannot be found.

Returns A list of dictionaries. Each bus event is a dictionary: [{‘command’: str, ‘begin’: int,
‘end’: int}]

Return type list

reset()
Reset the trace analyzer.

This method will bring the trace analyzer from any state to ‘RESET’ state.

At the same time, all the trace files stored previously will be removed.

run()
Start the trace capture.

Returns

Return type None

set_protocol(protocol, probes)
Set the protocol and probes for the decoder.

This method is usually called at beginning of the analyzer. To learn from that specific protocol, users can
call show_protocol to learn useful information about that protocol.

Currently only i2c and spi are supported.

This method also sets the probe names for the decoder.

The dictionary probes depends on the protocol. For instance, the I2C protocol requires the keys ‘SCL’ and
‘SDA’. An example can be:

2.8. pynq Package 195

Python productivity for Zynq (Pynq) Documentation, Release 2.0

>>>probes = {‘SCL’: ‘D2’, ‘SDA’: ‘D3’}

To avoid memory error for decoding, users can add NC as non-used pins to the probes.

Parameters

• protocol (str) – The name of the protocol.

• probes (dict) – A dictionary keeping the probe names and pin number.

setup(num_analyzer_samples=128, frequency_mhz=10)
Configure the trace analyzer.

The wrapper method for configuring the PS or Microblaze controlled trace analyzer.

Parameters

• num_analyzer_samples (int) – The number of samples to be analyzed.

• frequency_mhz (float) – The frequency of the captured samples, in MHz.

show_protocol()
Show information about the specified protocol.

This method will print out useful information about the protocol.

Returns

Return type None

status
Return the analyzer’s status.

Returns Indicating the current status of the analyzer; can be ‘RESET’, ‘READY’, or ‘RUN-
NING’.

Return type str

step()
Step the trace analyzer.

This method is only supported in the Microblaze controlled trace analyzer. An exception will be raised if
users want to call this method in PS controlled trace analyzer.

stop()
Stop the DMA after capture is done.

Returns

Return type None

pynq.lib.logictools.trace_analyzer.get_tri_state_pins(io_pin_dict, tri_dict)
Function to check tri-state pin specifications.

Any tri-state pin requires the input/output pin, and the tri-state selection pin to be specified. If any one is missing,
this method will raise an exception.

Parameters

• io_pin_dict (dict) – A dictionary storing the input/output pin mapping.

• tri_dict (dict) – A dictionary storing the tri-state pin mapping.

Returns A list storing unique tri-state and non tri-state pin names.

Return type list

196 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

2.8.4 pynq.mmio Module

class pynq.mmio.MMIO(base_addr, length=4, debug=False)
Bases: object

This class exposes API for MMIO read and write.

virt_base
int – The address of the page for the MMIO base address.

virt_offset
int – The offset of the MMIO base address from the virt_base.

base_addr
int – The base address, not necessarily page aligned.

length
int – The length in bytes of the address range.

debug
bool – Turn on debug mode if it is True.

mmap_file
file – Underlying file object for MMIO mapping

mem
mmap – An mmap object created when mapping files to memory.

array
numpy.ndarray – A numpy view of the mapped range for efficient assignment

read(offset=0, length=4)
The method to read data from MMIO.

Parameters

• offset (int) – The read offset from the MMIO base address.

• length (int) – The length of the data in bytes.

Returns A list of data read out from MMIO

Return type list

write(offset, data)
The method to write data to MMIO.

Parameters

• offset (int) – The write offset from the MMIO base address.

• data (int / bytes) – The integer(s) to be written into MMIO.

Returns

Return type None

2.8.5 pynq.overlay Module

The pynq.overlay module inherits from the PL module and is used to manage the state and contents of a PYNQ
Overlay. The module adds additional functionality to the PL module. For example, the PL module contains the
methods to download the overlay file. The Overlay module sets the PL clocks and ARM architecture registers before
before calling the Bitstream download() method.

2.8. pynq Package 197

Python productivity for Zynq (Pynq) Documentation, Release 2.0

class pynq.overlay.DefaultHierarchy(description)
Bases: pynq.overlay._IPMap

Hierarchy exposing all IP and hierarchies as attributes

This Hierarchy is instantiated if no more specific hierarchy class registered with register_hierarchy_driver is
specified. More specific drivers should inherit from DefaultHierarachy and call it’s constructor in __init__
prior to any other initialisation. checkhierarchy should also be redefined to return True if the driver matches
a hierarchy. Any derived class that meets these requirements will automatically be registered in the driver
database.

static checkhierarchy(description)
Function to check if the driver matches a particular hierarchy

This function should be redefined in derived classes to return True if the description matches what is
expected by the driver. The default implementation always returns False so that drivers that forget don’t
get loaded for hierarchies they don’t expect.

class pynq.overlay.DefaultIP(description)
Bases: object

Driver for an IP without a more specific driver

This driver wraps an MMIO device and provides a base class for more specific drivers written later. It also
provides access to GPIO outputs and interrupts inputs via attributes. More specific drivers should inherit from
DefaultIP and include a bindto entry containing all of the IP that the driver should bind to. Subclasses meeting
these requirements will automatically be registered.

mmio
pynq.MMIO – Underlying MMIO driver for the device

_interrupts
dict – Subset of the PL.interrupt_pins related to this IP

_gpio
dict – Subset of the PL.gpio_dict related to this IP

read(offset=0)
Read from the MMIO device

Parameters offset (int) – Address to read

write(offset, value)
Write to the MMIO device

Parameters

• offset (int) – Address to write to

• value (int or bytes) – Data to write

pynq.overlay.DocumentHierarchy(description)
Helper function to build a custom hierarchy class with a docstring based on the description. Mimics a class
constructor

pynq.overlay.DocumentOverlay(bitfile, download)
Function to build a custom overlay class with a custom docstring based on the supplied bitstream. Mimics a
class constructor.

class pynq.overlay.Overlay(bitfile_name, download=True, ignore_version=False)
Bases: pynq.pl.Bitstream

This class keeps track of a single bitstream’s state and contents.

198 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

The overlay class holds the state of the bitstream and enables run-time protection of bindlings.

Our definition of overlay is: “post-bitstream configurable design”. Hence, this class must expose configurability
through content discovery and runtime protection.

The overlay class exposes the IP and hierarchies as attributes in the overlay. If no other drivers are available the
DefaultIP is constructed for IP cores at top level and DefaultHierarchy for any hierarchies that contain address-
able IP. Custom drivers can be bound to IP and hierarchies by subclassing DefaultIP and DefaultHierarchy. See
the help entries for those class for more details.

This class stores four dictionaries: IP, GPIO, interrupt controller and interrupt pin dictionaries.

Each entry of the IP dictionary is a mapping: ‘name’ -> {phys_addr, addr_range, type, config, state}, where
name (str) is the key of the entry. phys_addr (int) is the physical address of the IP. addr_range (int) is the address
range of the IP. type (str) is the type of the IP. config (dict) is a dictionary of the configuration parameters. state
(str) is the state information about the IP.

Each entry of the GPIO dictionary is a mapping: ‘name’ -> {pin, state}, where name (str) is the key of the entry.
pin (int) is the user index of the GPIO, starting from 0. state (str) is the state information about the GPIO.

Each entry in the interrupt controller dictionary is a mapping: ‘name’ -> {parent, index}, where name (str) is
the name of the interrupt controller. parent (str) is the name of the parent controller or ‘’ if attached directly to
the PS7. index (int) is the index of the interrupt attached to.

Each entry in the interrupt pin dictionary is a mapping: ‘name’ -> {controller, index}, where name (str) is the
name of the pin. controller (str) is the name of the interrupt controller. index (int) is the line index.

bitfile_name
str – The absolute path of the bitstream.

bitstream
Bitstream – The corresponding bitstream object.

ip_dict
dict – All the addressable IPs from PS7. Key is the name of the IP; value is a dictionary mapping the
physical address, address range, IP type, configuration dictionary, and the state associated with that IP:
{str: {‘phys_addr’ : int, ‘addr_range’ : int, ‘type’ : str, ‘config’ : dict, ‘state’ : str}}.

gpio_dict
dict – All the GPIO pins controlled by PS7. Key is the name of the GPIO pin; value is a dictionary mapping
user index (starting from 0), and the state associated with that GPIO pin: {str: {‘index’ : int, ‘state’ : str}}.

interrupt_controllers
dict – All AXI interrupt controllers in the system attached to a PS7 interrupt line. Key is the name of the
controller; value is a dictionary mapping parent interrupt controller and the line index of this interrupt:
{str: {‘parent’: str, ‘index’ : int}}. The PS7 is the root of the hierarchy and is unnamed.

interrupt_pins
dict – All pins in the design attached to an interrupt controller. Key is the name of the pin; value is a
dictionary mapping the interrupt controller and the line index used: {str: {‘controller’ : str, ‘index’ : int}}.

download()
The method to download a bitstream onto PL.

Note: After the bitstream has been downloaded, the “timestamp” in PL will be updated. In addition, all
the dictionaries on PL will be reset automatically.

Returns

Return type None

2.8. pynq Package 199

Python productivity for Zynq (Pynq) Documentation, Release 2.0

is_loaded()
This method checks whether a bitstream is loaded.

This method returns true if the loaded PL bitstream is same as this Overlay’s member bitstream.

Returns True if bitstream is loaded.

Return type bool

load_ip_data(ip_name, data)
This method loads the data to the addressable IP.

Calls the method in the super class to load the data. This method can be used to program the IP. For
example, users can use this method to load the program to the Microblaze processors on PL.

Note: The data is assumed to be in binary format (.bin). The data name will be stored as a state information
in the IP dictionary.

Parameters

• ip_name (str) – The name of the addressable IP.

• data (str) – The absolute path of the data to be loaded.

Returns

Return type None

reset()
This function resets all the dictionaries kept in the overlay.

This function should be used with caution.

Returns

Return type None

class pynq.overlay.RegisterHierarchy(name, bases, attrs)
Bases: type

Metaclass to register classes as hierarchy drivers

Any class with this metaclass an the checkhierarchy function will be registered in the global driver database

class pynq.overlay.RegisterIP(name, bases, attrs)
Bases: type

Meta class that binds all registers all subclasses as IP drivers

The bindto attribute of subclasses should be an array of strings containing the VLNV of the IP the driver should
bind to.

2.8.6 pynq.ps Module

The pynq.ps module facilitates management of the Processing System (PS) and PS/PL interface. It provides Register
and Clocks classes for setting and getting of ARM Architecture register bits. The Register class is used in the Clocks
class for getting the ARM clock frequency, and getting and setting the frequencies Programmable Logic (PL) clocks.

class pynq.ps.Clocks
Bases: object

Class for all the PS and PL clocks exposed to users.

200 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

With this class, users can get the CPU clock and all the PL clocks. Users can also set PL clocks to other values
using this class.

cpu_mhz
float – The clock rate of the CPU, measured in MHz.

fclk0_mhz
float – The clock rate of the PL clock 0, measured in MHz.

fclk1_mhz
float – The clock rate of the PL clock 1, measured in MHz.

fclk2_mhz
float – The clock rate of the PL clock 2, measured in MHz.

fclk3_mhz
float – The clock rate of the PL clock 3, measured in MHz.

class pynq.ps.ClocksMeta
Bases: type

Meta class for all the PS and PL clocks not exposed to users.

Since this is the meta class for all the clocks, no attributes or methods are exposed to users. Users should use
the class Clocks instead.

Note: If this class is parsed on an unsupported architecture it will issue a warning and leave class variables
undefined

cpu_mhz
The getter method for CPU clock.

The returned clock rate is measured in MHz.

fclk0_mhz
The getter method for PL clock 0.

This method will read the register values, do the calculation, and return the current clock rate.

Returns The returned clock rate measured in MHz.

Return type float

fclk1_mhz
The getter method for PL clock 1.

This method will read the register values, do the calculation, and return the current clock rate.

Returns The returned clock rate measured in MHz.

Return type float

fclk2_mhz
The getter method for PL clock 2.

This method will read the register values, do the calculation, and return the current clock rate.

Returns The returned clock rate measured in MHz.

Return type float

fclk3_mhz
The getter method for PL clock 3.

2.8. pynq Package 201

Python productivity for Zynq (Pynq) Documentation, Release 2.0

This method will read the register values, do the calculation, and return the current clock rate.

Returns The returned clock rate measured in MHz.

Return type float

set_fclk(clk_idx, div0=None, div1=None, clk_mhz=100.0)
This method can set a PL clock frequency.

Users have to specify the index of the PL clock to be changed. For example, for fclk1, clk_idx is 1.

The CPU clock, by default, should not get changed.

Users have 2 options: 1. specify the 2 frequency divider values directly, or 2. specify the clock rate, in
which case the divider values will be calculated.

Note: In case div0 and div1 are both specified, the parameter clk_mhz will be ignored.

Parameters

• clk_idx (int) – The index of the PL clock to be changed, from 0 to 3.

• div0 (int) – The first frequency divider value.

• div1 (int) – The second frequency divider value.

• clk_mhz (float) – The clock rate in MHz.

class pynq.ps.Register(address, width=32)
Bases: object

Register class that allows users to access registers easily.

This class supports register slicing, which makes the access to register values much more easily. Users can
either use +1 or -1 as the step when slicing the register. By default, the slice starts from MSB to LSB, which is
consistent with the common hardware design practice.

For example, the following slices are acceptable: reg[31:13] (commonly used), reg[:], reg[3::], reg[:20:],
reg[1:3], etc.

Note: The slicing endpoints are closed, meaning both of the 2 endpoints will be included in the final returned
value. For example, reg[31:0] will return a 32-bit value; this is consistent with most of the hardware definitions.

address
int – The address of the register.

width
int – The width of the register, e.g., 32 (default) or 64.

2.8.7 pynq.pl Module

The pynq.pl module facilitates management of the Programmable Logic (PL). The PL module manages the PL state
through the PL class. The PL class is a singleton for the Overlay class and Bitstream classes that provide user-facing
methods for bitstream and overlay manipulation. The TCL in the PL module parses overlay .tcl files to determine
the overlay IP, GPIO pins, Interrupts indices, and address map. The Bitstream class within the PL module manages
downloading of bitstreams into the PL.

202 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

class pynq.pl.Bitstream(bitfile_name)
Bases: object

This class instantiates a programmable logic bitstream.

bitfile_name
str – The absolute path of the bitstream.

timestamp
str – Timestamp when loading the bitstream. Format: year, month, day, hour, minute, second, microsecond

download()
The method to download the bitstream onto PL.

Note: The class variables held by the singleton PL will also be updated. In addition, if this method is
called on an unsupported architecture it will warn and return.

Returns

Return type None

class pynq.pl.PL
Bases: object

Serves as a singleton for Overlay and Bitstream classes.

This class stores multiple dictionaries: IP dictionary, GPIO dictionary, interrupt controller dictionary, and inter-
rupt pins dictionary.

bitfile_name
str – The absolute path of the bitstream currently on PL.

timestamp
str – Bitstream download timestamp, using the following format: year, month, day, hour, minute, second,
microsecond.

ip_dict
dict – All the addressable IPs from PS7. Key is the name of the IP; value is a dictionary mapping the
physical address, address range, IP type, configuration dictionary, the state associated with that IP, any in-
terrupts and GPIO pins attached to the IP and the full path to the IP in the block design: {str: {‘phys_addr’
: int, ‘addr_range’ : int, ‘type’ : str, ‘config’ : dict, ‘state’ : str, ‘interrupts’ : dict, ‘gpio’ : dict, ‘fullpath’ :
str}}.

gpio_dict
dict – All the GPIO pins controlled by PS7. Key is the name of the GPIO pin; value is a dictionary mapping
user index (starting from 0), the state associated with that GPIO pin and the pins in block diagram attached
to the GPIO: {str: {‘index’ : int, ‘state’ : str, ‘pins’ : [str]}}.

interrupt_controllers
dict – All AXI interrupt controllers in the system attached to a PS7 interrupt line. Key is the name of the
controller; value is a dictionary mapping parent interrupt controller and the line index of this interrupt:
{str: {‘parent’: str, ‘index’ : int}}. The PS7 is the root of the hierarchy and is unnamed.

interrupt_pins
dict – All pins in the design attached to an interrupt controller. Key is the name of the pin; value is a
dictionary mapping the interrupt controller and the line index used: {str: {‘controller’ : str, ‘index’ : int}}.

hierarchy_dict
dict – All of the hierarchies in the block design containing addressable IP. The keys are the hiearachies and

2.8. pynq Package 203

Python productivity for Zynq (Pynq) Documentation, Release 2.0

the values are dictionaries containing the IP and sub-hierarchies contained in the hierarchy and and GPIO
and interrupts attached to the hierarchy. The keys in dictionaries are relative to the hierarchy and the ip
dict only contains immediately contained IP - not those in sub-hierarchies. {str: {‘ip’: dict, ‘hierarchies’:
dict, ‘interrupts’: dict, ‘gpio’: dict, ‘fullpath’: str}}

class pynq.pl.PLMeta
Bases: type

This method is the meta class for the PL.

This is not a class for users. Hence there is no attribute or method exposed to users.

Note: If this metaclass is parsed on an unsupported architecture it will issue a warning and leave class variables
undefined

bitfile_name
The getter for the attribute bitfile_name.

Returns The absolute path of the bitstream currently on PL.

Return type str

Note: If this method is called on an unsupported architecture it will warn and return an empty string

clear_dict()
Clear all the dictionaries stored in PL.

This method will clear all the related dictionaries, including IP dictionary, GPIO dictionary, etc.

client_request(address=’/home/docs/checkouts/readthedocs.org/user_builds/pynq/checkouts/v2.1/pynq/.log’,
key=b’xilinx’)

Client connects to the PL server and receives the attributes.

This method should not be used by the users directly. To check open pipes in the system, use lsof | grep
<address> and kill -9 <pid> to manually delete them.

Parameters

• address (str) – The filename on the file system.

• key (bytes) – The authentication key of connection.

Returns

Return type None

gpio_dict
The getter for the attribute gpio_dict.

Returns The dictionary storing the PS GPIO pins.

Return type dict

hierarchy_dict
The getter for the attribute hierarchy_dict

Returns The dictionary containing the hierarchies in the design

Return type dict

interrupt_controllers
The getter for the attribute interrupt_controllers.

204 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Returns The dictionary storing interrupt controller information.

Return type dict

interrupt_pins
The getter for the attribute interrupt_pins.

Returns The dictionary storing the interrupt endpoint information.

Return type dict

ip_dict
The getter for the attribute ip_dict.

Returns The dictionary storing addressable IP instances; can be empty.

Return type dict

load_ip_data(ip_name, data)
This method writes data to the addressable IP.

Note: The data is assumed to be in binary format (.bin). The data name will be stored as a state information
in the IP dictionary.

Parameters

• ip_name (str) – The name of the addressable IP.

• data (str) – The absolute path of the data to be loaded.

Returns

Return type None

reset()
Reset both all the dictionaries.

This method must be called after a bitstream download. 1. In case there is a *.tcl file, this method will
reset the IP, GPIO , and interrupt dictionaries based on the tcl file. 2. In case there is no *.tcl file, this
method will simply clear the state information stored for all dictionaries.

server_update(continued=1)
Client sends the attributes to the server.

This method should not be used by the users directly. To check open pipes in the system, use lsof | grep
<address> and kill -9 <pid> to manually delete them.

Parameters continued (int) – Continue (1) or stop (0) the PL server.

Returns

Return type None

setup(address=’/home/docs/checkouts/readthedocs.org/user_builds/pynq/checkouts/v2.1/pynq/.log’,
key=b’xilinx’)

Start the PL server and accept client connections.

This method should not be used by the users directly. To check open pipes in the system, use lsof | grep
<address> and kill -9 <pid> to manually delete them.

Parameters

• address (str) – The filename on the file system.

2.8. pynq Package 205

Python productivity for Zynq (Pynq) Documentation, Release 2.0

• key (bytes) – The authentication key of connection.

Returns

Return type None

timestamp
The getter for the attribute timestamp.

Returns Bitstream download timestamp.

Return type str

2.8.8 pynq.xlnk Module

class pynq.xlnk.ContiguousArray
Bases: numpy.ndarray

A subclass of numpy.ndarray which is allocated using physically contiguous memory for use with DMA engines
and hardware accelerators. As physically contiguous memory is a limited resource it is strongly recommended
to free the underlying buffer with close when the buffer is no longer needed. Alternatively a with statement can
be used to automatically free the memory at the end of the scope.

This class should not be constructed directly and instead created using Xlnk.cma_array.

pointer
cdata void* – The virtual address pointer to the memory location

physical_address
int – The physical address to the array

close()
Free the underlying memory

See freebuffer for more details

flush()
Flush the underlying memory if necessary

freebuffer()
Free the underlying memory

This will free the memory regardless of whether other objects may still be using the buffer so ensure that
no other references to the array exist prior to freeing.

invalidate()
Invalidate the underlying memory if necessary

class pynq.xlnk.Xlnk
Bases: object

Class to enable CMA memory management.

The CMA state maintained by this class is local to the application except for the CMA Memory Available
attribute which is global across all the applications.

bufmap
dict – Mapping of allocated memory to the buffer sizes in bytes.

ffi
cffi instance – Shared-object interface for the compiled CMA shared object

206 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Note: If this class is parsed on an unsupported architecture it will issue a warning and leave the class variable
libxlnk undefined

cma_alloc(length, cacheable=0, data_type=’void’)
Allocate physically contiguous memory buffer.

Allocates a new buffer and adds it to bufmap.

Possible values for parameter cacheable are:

1: the memory buffer is cacheable.

0: the memory buffer is non-cacheable.

Examples

mmu = Xlnk()

Allocate 10 void * memory locations.

m1 = mmu.cma_alloc(10)

Allocate 10 float * memory locations.

m2 = mmu.cma_alloc(10, data_type = “float”)

Notes

1. Total size of buffer is automatically calculated as size = length * sizeof(data_type)

2. This buffer is allocated inside the kernel space using xlnk driver. The maximum allocatable memory
is defined at kernel build time using the CMA memory parameters. For Pynq-Z1 kernel, it is specified as
128MB.

The unit of length depends upon the data_type argument.

Parameters

• length (int) – Length of the allocated buffer. Default unit is bytes.

• cacheable (int) – Indicating whether or not the memory buffer is cacheable.

• data_type (str) – CData type of the allocated buffer. Should be a valid C-Type.

Returns An CFFI object which can be accessed similar to arrays.

Return type cffi.FFI.CData

cma_array(shape, dtype=<class ’numpy.uint32’>, cacheable=0, pointer=None, cache=None)
Get a contiguously allocated numpy array

Create a numpy array with physically contiguously array. The physical address of the array can be found
using the physical_address attribute of the returned object. The array should be freed using either ar-
ray.freebuffer() or array.close() when the array is no longer required. Alternatively cma_array may be
used in a with statement to automatically free the memory at the end of the block.

Parameters

• shape (int or tuple of int) – The dimensions of the array to construct

2.8. pynq Package 207

Python productivity for Zynq (Pynq) Documentation, Release 2.0

• dtype (numpy.dtype or str) – The data type to construct - defaults to 32-bit un-
signed int

• cacheable (int) – Whether the buffer should be cacheable - defaults to 0

Returns The numpy array

Return type numpy.ndarray

static cma_cast(data, data_type=’void’)
Cast underlying buffer to a specific C-Type.

Input buffer should be a valid object which was allocated through cma_alloc or a CFFI pointer to a memory
buffer. Handy for changing void buffers to user defined buffers.

Parameters

• data (cffi.FFI.CData) – A valid buffer pointer allocated via cma_alloc.

• data_type (str) – New data type of the underlying buffer.

Returns Pointer to buffer with specified data type.

Return type cffi.FFI.CData

cma_free(buf)
Free a previously allocated buffer.

Input buffer should be a valid object which was allocated through cma_alloc or a CFFI pointer to a memory
buffer.

Parameters buf (cffi.FFI.CData) – A valid buffer pointer allocated via cma_alloc.

Returns

Return type None

cma_get_buffer(buf, length)
Get a buffer object.

Used to get an object which supports python buffer interface. The return value thus, can be cast to objects
like bytearray, memoryview etc.

Parameters

• buf (cffi.FFI.CData) – A valid buffer object which was allocated through
cma_alloc.

• length (int) – Length of buffer in Bytes.

Returns A CFFI object which supports buffer interface.

Return type cffi.FFI.CData

cma_get_phy_addr(buf_ptr)
Get the physical address of a buffer.

Used to get the physical address of a memory buffer allocated with cma_alloc. The return value can be
used to access the buffer from the programmable logic.

Parameters buf_ptr (cffi.FFI.CData) – A void pointer pointing to the memory buffer.

Returns The physical address of the memory buffer.

Return type int

208 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

static cma_memcopy(dest, src, nbytes)
High speed memcopy between buffers.

Used to perform a byte level copy of data from source buffer to the destination buffer.

Parameters

• dest (cffi.FFI.CData) – Destination buffer object which was allocated through
cma_alloc.

• src (cffi.FFI.CData) – Source buffer object which was allocated through
cma_alloc.

• nbytes (int) – Number of bytes to copy.

Returns

Return type None

cma_stats()
Get current CMA memory Stats.

CMA Memory Available : Systemwide CMA memory availability.

CMA Memory Usage : CMA memory used by current object.

Buffer Count : Buffers allocated by current object.

Returns Dictionary of current stats.

Return type dict

ffi = <cffi.api.FFI object>

xlnk_reset()
Systemwide Xlnk Reset.

Notes

This method resets all the CMA buffers allocated across the system.

Returns

Return type None

pynq.xlnk.sig_handler(signum, frame)

2.9 Verification

This section documents the test infrastructure supplied with the pynq package. It is organized as follows:

• Running Tests : describes how to run the pytest.

• Writing Tests : explains how to write tests.

• Miscellaneous : covers additional information relating to tests.

2.9. Verification 209

Python productivity for Zynq (Pynq) Documentation, Release 2.0

2.9.1 Running Tests

The pynq package provides tests for most python modules.

To run all the tests together, pytest can be run in a Linux terminal on the board. All the tests will be automatically
collected in the current directory and child directories.

Note: The pytests have to be run as root

cd /home/xilinx/pynq
sudo py.test -vsrw

For a complete list of pytest options, please refer to Usage and Invocations - Pytest.

Collection Phase

During this phase, the pytest will collect all the test modules in the current directory and all of its child directories.
The user will be asked whether a device is connected, and to which port it is connected.

For example:

Pmod OLED attached to the board? ([yes]/no)>>> yes
Type in the interface ID of the Pmod OLED (PMODA/PMODB):

For the answer to the first question, “yes”, “YES”, “Yes”, “y”, and “Y” are acceptable; the same applies for “no” as an
answer. You can also press Enter; this is equivalent to “yes”.

For the following question, type “PMODA” for devices connected to PMODA interface, or “PMODB” for devices
connected to PMODB interface.

Answering “No” will skip the corresponding test(s) during the testing phase.

Testing Phase

The test suite will guide the user through all the tests implemented in the pynq package. As part of the tests, the user
will be prompted for confirmation that the tests have passed, for example:

test_led8 ...
Pmod LED 0 on? ([yes]/no)>>>

Again press “Enter”, or type “yes”, “no” etc.

At the end of the testing phase, a summary will be given to show users how many tests are passed / skipped / failed.

2.9.2 Writing Tests

This section follows the guide available on Pytest Usages and Examples. You can write a test class with assertions on
inputs and outputs to allow automatic testing. The names of the test modules must start with test_; all the methods for
tests in any test module must also begin with test_. One reason to enforce this is to ensure the tests will be collected
properly. See the Full pytest documentation for more details.

210 Chapter 2. Summary

http://pytest.org/latest/usage.html
http://doc.pytest.org/en/latest/example
http://doc.pytest.org/en/latest/index.html

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Step 1

First of all, the pytest package has to be imported:

import pytest

Step 2

Decorators can be specified directly above the methods. For example, users can specify (1) the order of this test in
the entire pytest process, and (2) the condition to skip the corresponding test. More information on decorators can be
found in Marking test functions with attributes - Pytest.

An example will be given in the next step.

Step 3

Directly below decorators, you can write some assertions/tests. See the example below:

@pytest.mark.skipif(not flag,
reason="need ADC and DAC attached to the base overlay")

def test_dac_adc_loop():
"""Test for writing a single value via the loop.

First check whether read() correctly returns a string. Then ask the users
to write a voltage on the DAC, read from the ADC, and compares the two
voltages.

The exception is raised when the difference is more than 10% and more than
0.1V.

The second test writes a sequence of voltages on the DAC and read from
the ADC, then checks whether they are approximately the same
(with a delta of 10%).

Note

Users can use a straight cable (instead of wires) to do this test.
For the 6-pin DAC Pmod, it has to be plugged into the upper row of the
Pmod interface.

"""
Overlay('base.bit').download()
dac = Pmod_DAC(dac_id)
adc = Pmod_ADC(adc_id)

value = float(input("\nInsert a voltage in the range of [0.00, 2.00]: "))
assert value<=2.00, 'Input voltage should not be higher than 2.00V.'
assert value>=0.00, 'Input voltage should not be lower than 0.00V.'
dac.write(value)
sleep(0.05)
assert round(abs(value-adc.read()[0]),2)<max(0.1, 0.1*value), \

'Read value != write value.'

print('Generating 100 random voltages from 0.00V to 2.00V...')
for _ in range(100):

value = round(0.0001*randint(0, 20000), 4)

2.9. Verification 211

http://doc.pytest.org/en/latest/mark.html

Python productivity for Zynq (Pynq) Documentation, Release 2.0

dac.write(value)
sleep(0.05)
assert round(abs(value-adc.read()[0]), 2) < max(0.1, 0.1*value), \

'Read value {} != write value {}.'.format(adc.read(), value)

del dac, adc

Note the assert statements specify the desired condition, and raise exceptions whenever that condition is not met. A
customized exception message can be attached at the end of the assert methods, as shown in the example above.

2.9.3 Miscellaneous Test Setup

ADC Jumper

In our tests and demos, we have used a Pmod ADC. In order to make it work properly with the testing environment,
you need to set a jumper JP1 to REF on the Pmod ADC. This will allow the ADC to use the correct reference voltage.

Cable Type

Two types of cables can be used with the tests in the pynq package, a “straight” cable, and a “loopback” cable:

212 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

• Straight cable (upper one in the image): The internal wires between the two ends are straight. This cable is
intended for use as an extension cable.

• Loopback cable (lower one in the image, with red ribbon): The internal wires are twisted. This cable is intended
for testing.

There are marks on the connectors at each end of the cable to indicate the orientation and wiring of the cable.

Note: You must not short VCC and GND as it may damage the board. It is good practice to align the pins with the
dot marks to VCC of the Pmod interfaces.

Note: For testing, there is only one connection type (mapping) allowed for each cable type. Otherwise VCC and
GND could be shorted, damaging the board.

2.10 Frequently Asked Questions (FAQs)

2.10.1 Troubleshooting

I can’t connect to my board

1. Check the board is powered on (Red LED LD13) and that the bitstream has been loaded (Green “DONE” LED
LD12)

2. Your board and PC/laptop must be on the same network, or have a direct network connection. Check that you
can ping the board (hostname, or IP address) from a command prompt or terminal on your host PC:

ping pynq

or

2.10. Frequently Asked Questions (FAQs) 213

Python productivity for Zynq (Pynq) Documentation, Release 2.0

ping 192.168.2.99

(The default IP address of the board is : 192.168.2.99)

3. Log on to the board through a terminal, and check the system is running, i.e. that the Linux shell is accessible.
See below for details on logging on with a terminal.

4. If you can’t ping the board, or the host PC, check your network settings.

• You must ensure your PC/laptop and board have IP addresses in the same range. If your network cables are
connected directly to your PC/laptop and board, you may need to set a static IP address for your PC/laptop
manually. See Assign your computer a static IP address.

• If you have a proxy setup, you may need to add a rule to bypass the board hostname/ip address.

• If you are using a docking station, when your laptop is docked, the Ethernet port on the PC may be disabled.

My board is not powering on (No Red LED)

The board can be powered by USB cable, or power adapter (7 - 15V V 2.1mm centre-positive barrel jack). Make sure
Jumper JP5 is set to USB or REG (for power adapter). If powering the board via USB, make sure the USB port is fully
powered. Laptops in low power mode may reduce the available power to a USB port.

The bitstream is not loading (No Green LED)

• Check the Micro-SD card is inserted correctly (the socket is spring loaded, so push it in until you feel it click
into place).

• Check jumper JP4 is set to SD (board boots from Micro SD card).

• Connect a terminal and verify that the Linux boot starts.

If the Linux boot does not start, or fails, you may need to flash the Micro SD card with the PYNQ-Z1 image.

The hostname of the board is not resolving/not found

It may take the hostname (pynq) some time to resolve on your network. If you know the IP address of the board, it
may be faster to use the IP address to navigate to the Jupyter portal instead of the hostname.

For example, in your browser, go to http://192.168.2.99:9090 if the board is using the static IP address 192.168.2.99.

You can find the IP by first connecting a terminal to the board, then running the following command in Linux command
line:

ifconfig

Check the settings for eth0 and look for an IP address.

I don’t have an Ethernet port on my PC/Laptop

If you don’t have an Ethernet port, you can get a USB to Ethernet adapter.

If you have a wireless router with Ethernet ports (LAN), you can connect your PYNQ-Z1 board to an Ethernet port on
your router, and connect to it from your PC using WiFi. (You may need to change settings on your Router to enable
the Wireless network to communicate with your LAN - check your equipment documentation for details.)

214 Chapter 2. Summary

http://192.168.2.99:9090

Python productivity for Zynq (Pynq) Documentation, Release 2.0

You can also connect a WiFi dongle to the board, and set up the board to connect to the wireless network. Your host
PC can then connect to the same wireless network to connect to the board.

How do I setup my computer to connect to the board?

If you are connecting your board to your network (i.e. you have plugged the Ethernet cable into the board, and the other
end into a network switch, or home router), then you should not need to setup anything on your computer. Usually,
both your computer, and board will be assigned an IP address automatically, and they will be able to communicate
with each other.

If you connect your board directly to your computer with an ethernet cable, then you need to make sure that they have
IP addresses in the same range. The board will assign itself a static IP address (by default 192.168.2.99), and you
will need to assign a static IP address in the same range to the computer. This allows your computer and board to
communicate to each other over the Ethernet cable.

See Assign your computer a static IP address.

I can’t connect to the Jupyter portal!

If your board is powered on, and you see the Red and Green LEDs, but still can’t connect to the Jupyter Portal, or see
the Samba shared drive, then you need to verify your IP adddresses.

By default, the board has DHCP enabled. If you plug the board into a home router, or network switch connected to
your network, it should be allocated an IP address automatically. If not, it should fall back to a static IP address of
192.168.2.99.

If you plug the Ethernet cable directly to your computer, you will need to configure your network card to have an IP
in the same address range, e.g. 192.168.2.1.

VPN

If your PC/laptop is connected to a VPN, and your board is not on the same VPN network, this will block access to
local IP addresses. You need to disable the VPN, or set it to bypass the board address.

Proxy

If your board is connected to a network that uses a proxy, you need to set the proxy variables on the board

set http_proxy=my_http_proxy:8080
set https_proxy=my_https_proxy:8080

2.10.2 Board/Jupyter settings

How do I modify the board settings?

Linux is installed on the board. Connect to the board using a terminal, and change the settings as you would for any
other Linux machine.

2.10. Frequently Asked Questions (FAQs) 215

Python productivity for Zynq (Pynq) Documentation, Release 2.0

How do I find the IP address of the board?

Connect to the board using a terminal (see above) and type:

hostname -I

This will help you find the IP address for the eth0 Ethernet adapter or the WiFi dongle.

How do I set/change the static IP address on the board?

The Static IP address is set in /etc/dhcp/dhclient.conf - you can modify the board’s static IP here.

How do I find my hostname?

Connect to the board using a terminal and run:

hostname

How do I change the hostname?

If you have multiple boards on the same network, you should give them different host names. You can change the
hostname by editing the Linux hostname files: /etc/hostname and /etc/hosts.

What is the user account and password?

The username for all Linux, Jupyter and Samba logins is xilinx. The password is xilinx.

How do I enable/disable the Jupyter notebook password?

The Jupyter configuration file can be found at

/root/.jupyter/jupyter_notebook_config.py

You can add or comment out the c.NotebookApp.password to bypass the password authentication when connecting to
the Jupyter Portal.

c.NotebookApp.password =u
→˓'sha1:6c2164fc2b22:ed55ecf07fc0f985ab46561483c0e888e8964ae6'

How do I change the Jupyter notebook password

A hashed password is saved in the Jupyter Notebook configuration file.

/root/.jupyter/jupyter_notebook_config.py

You can create a hashed password using the function IPython.lib.passwd():

from IPython.lib import passwd
password = passwd("secret")
6c2164fc2b22:ed55ecf07fc0f985ab46561483c0e888e8964ae6

216 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

You can then add or modify the line in the jupyter_notebook_config.py file

c.NotebookApp.password =u
→˓'sha1:6c2164fc2b22:ed55ecf07fc0f985ab46561483c0e888e8964ae6'

2.10.3 General Questions

Does Pynq support Python 2.7?

Python 2.7 is loaded on Zynq® and Python 2.7 scripts can be executed. The PYNQ v2.0 release, is based on Python
3.6. No attempts have been made to ensure backward compatibility with Python 2.7.

How do I write the Micro SD card image?

You can find instructions in Writing the SD Card Image.

What type of Micro SD card do I need?

We recommend you use a card at least 8GB in size and at least class 4 speed rating.

How do I connect to the board using a terminal?

To do this, you need to connect to the board using a terminal:

Connect a Micro USB cable to the board and your PC/Laptop, and use a terminal emulator (puTTY, TeraTerm etc) to
connect to the board.

Terminal Settings:

• 115200 baud

• 8 data bits

• 1 stop bit

• No Parity

• No Flow Control

2.11 Glossary

2.11.1 A-G

APSOC All Programmable System on Chip

BSP A board support package (BSP) is a collection of low-level libraries and drivers. The Xilinx®
software development Kit (SDK) uses a BSP to form the lowest layer of your application software
stack. Software applications must link against or run on top of a given software platform using the
APIs that it provides. Therefore, before you can create and use software applications in SDK, you
must create a board support package

2.11. Glossary 217

Python productivity for Zynq (Pynq) Documentation, Release 2.0

FPGA Field Programmable Gate Arrays (FPGAs) are semiconductor devices that are based around a
matrix of configurable logic blocks (CLBs) connected via programmable interconnects. FPGAs can
be reprogrammed to desired application or functionality requirements after manufacturing. This fea-
ture distinguishes FPGAs from Application Specific Integrated Circuits (ASICs), which are custom
manufactured for specific design tasks.

2.11.2 H-R

HDF Hardware Definition File (.hdf). This file is created by Vivado and contains information about a
processor system in an FPGA overlay. The HDF specifies the peripherals that exist in the system,
and the memory map. This is used by the BSP to build software libraries to support the available
peripherals.

I2C See IIC

IIC Inter-Integrated Circuit; multi-master, multi-slave, single-ended, serial computer bus protocol

IOP Input/Output Processor.

Jupyter (Notebooks) Jupyter is an open source project consisting of an interactive, web application that
allows users to create and share notebook documents that contain live code and the full range of
rich media supported by modern browsers. These include text, images, videos, LaTeX-styled equa-
tions, and interactive widgets. The Jupyter framework is used as a front-end to over 40 different
programming languages. It originated from the interactive data science and scientific computing
communities. Its uses include: data cleaning and transformation, numerical simulation, statistical
modelling, machine learning and much more.

MicroBlaze MicroBlaze is a soft microprocessor core designed for Xilinx FPGAs. As a soft-core pro-
cessor, MicroBlaze is implemented entirely in the general-purpose memory and logic fabric of an
FPGA.

Pmod Interface The Pmod or Peripheral Module interface is used to connect low frequency, low I/O
pin count peripheral modules to host controller boards.accessory boards to add functionality to the
platform. e.g. ADC, DAC, I/O interfaces, sensors etc.

(Micro) SD Secure Digital (Memory Card standard)

readthedocs.org readthedocs.org is a popular website that hosts the documentation for open source
projects at no cost. readthedocs.org uses Sphinx document generation tools to automatically gen-
erate both the website and PDF versions of project documentation from a GitHub repository when
new updates are pushed to that site.

REPL A read–eval–print loop (REPL), also known as an interactive toplevel or language shell, is a sim-
ple, interactive computer programming environment that takes single user inputs (i.e. single expres-
sions), evaluates them, and returns the result to the user; a program written in a REPL environment
is executed piecewise. The term is most usually used to refer to programming interfaces similar to
the classic Lisp machine interactive environment. Common examples include command line shells
and similar environments for programming languages, and is particularly characteristic of scripting
languages wikipedia

reST Restructured text is a markup language used extensively with the Sphinx document generator

2.11.3 S-Z

SDK Xilinx SDK - Software Development Kit. Software development environment including cross-
compiles for ARM®, and MicroBlaze processors. Also includes debug, and profiling tools. Re-
quired to build software for a MicroBlaze processor inside an IOP.

218 Chapter 2. Summary

http://www.xilinx.com/training/fpga/fpga-field-programmable-gate-array.htm
https://www.jupyter.org
https://en.wikipedia.org/wiki/MicroBlaze
http://www.digilentinc.com/Pmods/Digilent-Pmod_%20Interface_Specification.pdf
https://readthedocs.org
https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop

Python productivity for Zynq (Pynq) Documentation, Release 2.0

SOC System On Chip

Sphinx A document generator written in Python and used extensively to document Python and other
coding projects

SPI Serial Peripheral Interface; synchronous serial communication interface specification

UART Universal asynchronous receiver/transmitter; Serial communication protocol

Vivado Vivado Design Suite is a suite of computer-aided design tools provided by Xilinx for creating
FPGA designs. It is used to design and implement the overlays used in Pynq.

XADC An XADC is a hard IP block that consists of dual 12-bit, 1 Mega sample per second (MSPS),
analog-to-digital converters and on-chip sensors which are integrated into Xilinx 7 series FPGA
devices

Zynq® Zynq-7000 All Programmable SoC (APSoC) devices integrate the software programmability of
an ARM®-based processor with the hardware programmability of an FPGA, enabling key analytics
and hardware acceleration while integrating CPU, DSP, ASSP, and mixed signal functionality on a
single device. Zynq-7000 AP SoCs infuse customizable intelligence into today’s embedded systems
to suit your unique application requirements

Zynq PL Programmable Logic - FPGA fabric

Zynq PS Processing System - SOC processing subsystem built around dual-core, ARM Cortex-A9 pro-
cessor

2.12 Useful Links

2.12.1 Git

• Interactive introduction to Git

• Free PDF copy of The Pro Git book by Scott Chacon and Ben Straub

2.12.2 Jupyter

• Jupyter Project

• Try Jupyter in your browser

2.12.3 PUTTY (terminal emulation software)

• PUTTY download page

2.12.4 Pynq Technical support

• Pynq Technical support

2.12.5 Python built-in functions

• C Python native functions

2.12. Useful Links 219

http://www.xilinx.com/products/design-tools/vivado.html
http://www.xilinx.com/support/documentation/user_guides/ug480_7Series_XADC.pdf
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://try.github.io
https://git-scm.com/book/en/v2
http://jupyter.org/
https://try.jupyter.org/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.pynq.io/support.html
https://docs.python.org/3/library/functions.html

Python productivity for Zynq (Pynq) Documentation, Release 2.0

2.12.6 Python training

• The Python Tutorial from the Python development team

• Google Python training including videos

• Python Tutor including visualization of Python program execution

• 20 Best Free Tutorials to Learn Python as of 9 Oct 2015

2.12.7 reStructuredText

• reStructuredText docs

• reStructuredText Primer

• Online reStructuredText editor

2.12.8 Sphinx

• The official Sphinx docs

• Online reST and Sphinx editor with rendering

• A useful Sphinx cheat sheet

• Jupyter Notebook Tools for Sphinx

2.13 Appendix

2.13.1 Technology Backgrounder

Overlays and Design Re-use

The ‘magic’ of mapping an application to an APSoC, without designing custom hardware, is achieved by using FPGA
overlays. FPGA overlays are FPGA designs that are both highly configurable and highly optimized for a given domain.
The availability of a suitable overlay removes the need for a software designer to develop a new bitstream. Software
and system designers can customize the functionality of an existing overlay in software once the API for the overlay
bitstream is available.

An FPGA overlay is a domain-specific FPGA design that has been created to be highly configurable so that it can be
used in as many different applications as possible. It has been crafted to maximize post-bitstream programmability
which is exposed via its API. The API provides a new entry-point for application-focused software and systems
engineers to exploit APSoCs in their solutions. With an API they only have to write software to program configure the
functions of an overlay for their applications.

By analogy with the Linux kernel and device drivers, FPGA overlays are designed by relatively few engineers so
that they can be re-used by many others. In this way, a relatively small number of overlay designers can support a
much larger community of APSoC designers. Overlays exist to promote re-use. Like kernels and device drivers, these
hardware-level artefacts are not static, but evolve and improve over time.

220 Chapter 2. Summary

https://docs.python.org/3.5/tutorial/
https://developers.google.com/edu/python/introduction
http://www.pythontutor.com/
http://noeticforce.com/best-free-tutorials-to-learn-python-pdfs-ebooks-online-interactive
http://docutils.sourceforge.net/rst.html
http://www.sphinx-doc.org/en/stable/rest.html
http://rst.ninjs.org/
http://www.sphinx-doc.org/en/stable/index.html
https://livesphinx.herokuapp.com/
http://thomas-cokelaer.info/tutorials/sphinx/rest_syntax.html
http://nbsphinx.readthedocs.io/en/0.2.7/

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Characteristics of Good Overlays

Creating one FPGA design and its corresponding API to serve the needs of many applications in a given domain is
what defines a successful overlay. This, one-to-many relationship between the overlay and its users, is different from
the more common one-to-one mapping between a bitstream and its application.

Consider the example of an overlay created for controlling drones. Instead of creating a design that is optimized
for controlling just a single type of drone, the hardware architects recognize the many common requirements shared
by different drone controllers. They create a design for controlling drones that is a flexible enough to be used with
several different drones. In effect, they create a drone-control overlay. They expose, to the users of their bitstream,
an API through which the users can determine in software the parameters critical to their application. For example, a
drone control overlay might support up to eight, pulse-width-modulated (PWM) motor control circuits. The software
programmer can determine how many of the control circuits to enable and how to tune the individual motor control
parameters to the needs of his particular drone.

The design of a good overlay shares many common elements with the design of a class in object-oriented software.
Determining the fundamental data structure, the private methods and the public interface are common requirements.
The quality of the class is determined both by its overall usefulness and the coherency of the API it exposes. Well-
engineered classes and overlays are inherently useful and are easy to learn and deploy.

Pynq adopts a holistic approach by considering equally the design of the overlays, the APIs exported by the overlays,
and how well these APIs interact with new and existing Python design patterns and idioms to simplify and improve
the APSoC design process. One of the key challenges is to identify and refine good abstractions. The goal is to
find abstractions that improve design coherency by exposing commonality, even among loosely-related tasks. As new
overlays and APIs are published, we expect that the open-source software community will further improve and extend
them in new and unexpected ways.

Note that FPGA overlays are not a novel concept. They have been studied for over a decade and many academic
papers have been published on the topic.

The Case for Productivity-layer Languages

Successive generations of All Programmable Systems on Chip embed more processors and greater processing power.
As larger applications are integrated into APSoCs, the embedded code increases also. Embedded code that is speed
or size critical, will continue to be written in C/C++. These ‘efficiency-layer or systems languages’ are needed to
write fast, low-level drivers, for example. However, the proportion of embedded code that is neither speed-critical or
size-critical, is increasing more rapidly. We refer to this broad class of code as embedded applications code.

Programming embedded applications code in higher-level, ‘productivity-layer languages’ makes good sense. It sim-
ply extends the generally-accepted best-practice of always programming at the highest possible level of abstraction.
Python is currently a premier productivity-layer language. It is now available in different variants for a range of em-
bedded systems, hence its adoption in Pynq. Pynq runs CPython on Linux on the ARM® processors in Zynq® devices.
To further increase productivity and portability, Pynq uses the Jupyter Notebook, an open-source web framework to
rapidly develop systems, document their behavior and disseminate the results.

2.13.2 Writing the SD Card Image

Windows

• Insert the Micro SD card into your SD card reader and check which drive letter was assigned. You can find this
by opening Computer/My Computer in Windows Explorer.

• Download the Win32DiskImager utility from the Sourceforge Project page

• Extract the Win32DiskImager executable from the zip file and run the Win32DiskImager utility as administrator.
(Right-click on the file, and select Run as administrator.)

2.13. Appendix 221

https://sourceforge.net/projects/win32diskimager/

Python productivity for Zynq (Pynq) Documentation, Release 2.0

• Select the PYNQ-Z1 image file (.img).

• Select the drive letter of the SD card. Be careful to select the correct drive. If you select the wrong drive you
can overwrite data on that drive. This could be another USB stick, or memory card connected to your computer,
or your computer’s hard disk.

• Click Write and wait for the write to complete.

MAC / OS X

On Mac OS, you can use dd, or the graphical tool ImageWriter to write to your Micro SD card.

• First open a terminal and unzip the image:

unzip pynq_z1_image_2016_09_14.zip -d ./

ImageWriter

Note the Micro SD card must be formatted as FAT32.

• Insert the Micro SD card into your SD card reader

• From the Apple menu, choose “About This Mac”, then click on “More info. . . ”; if you are using Mac OS X
10.8.x Mountain Lion or newer, then click on “System Report”.

• Click on “USB” (or “Card Reader” if using a built-in SD card reader) then search for your SD card in the upper-
right section of the window. Click on it, then search for the BSD name in the lower-right section; it will look
something like diskn where n is a number (for example, disk4). Make sure you take a note of this number.

• Unmount the partition so that you will be allowed to overwrite the disk. To do this, open Disk Utility and
unmount it; do not eject it, or you will have to reconnect it. Note that on Mac OS X 10.8.x Mountain Lion,
“Verify Disk” (before unmounting) will display the BSD name as /dev/disk1s1 or similar, allowing you to skip
the previous two steps.

• From the terminal, run the following command:

sudo dd bs=1m if=path_of_your_image.img of=/dev/rdiskn

Remember to replace n with the number that you noted before!

If this command fails, try using disk instead of rdisk:

sudo dd bs=1m if=path_of_your_image.img of=/dev/diskn

Wait for the card to be written. This may take some time.

Command Line

• Open a terminal, then run:

diskutil list

• Identify the disk (not partition) of your SD card e.g. disk4, not disk4s1.

• Unmount your SD card by using the disk identifier, to prepare for copying data to it:

222 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

diskutil unmountDisk /dev/disk<disk# from diskutil>

where disk is your BSD name e.g. diskutil unmountDisk /dev/disk4

• Copy the data to your SD card:

sudo dd bs=1m if=image.img of=/dev/rdisk<disk# from diskutil>

where disk is your BSD name e.g. sudo dd bs=1m if=pynq_z1_image_2016_09_07.img
of=/dev/rdisk4

This may result in a dd: invalid number ‘1m’ error if you have GNU coreutils installed. In that case, you need to use
a block size of 1M in the bs= section, as follows:

sudo dd bs=1M if=image.img of=/dev/rdisk<disk# from diskutil>

Wait for the card to be written. This may take some time. You can check the progress by sending a SIGINFO signal
(press Ctrl+T).

If this command still fails, try using disk instead of rdisk, for example:

sudo dd bs=1m if=pynq_z1_image_2016_09_07.img of=/dev/disk4

Linux

dd

Please note the dd tool can overwrite any partition on your machine. Please be careful when specifying the drive in
the instructions below. If you select the wrong drive, you could lose data from, or delete your primary Linux partition.

• Run df -h to see what devices are currently mounted.

• Insert the Micro SD card into your SD card reader

• Run df -h again.

The new device that has appeared is your Micro SD card. The left column gives the device name; it will be listed
as something like /dev/mmcblk0p1 or /dev/sdd1. The last part (p1 or 1 respectively) is the partition number but you
want to write to the whole SD card, not just one partition. You need to remove that part from the name. e.g. Use
/dev/mmcblk0 or /dev/sdd as the device name for the whole SD card.

Now that you’ve noted what the device name is, you need to unmount it so that files can’t be read or written to the SD
card while you are copying over the SD image.

• Run umount /dev/sdd1, replacing sdd1 with whatever your SD card’s device name is (including the partition
number).

If your SD card shows up more than once in the output of df due to having multiple partitions on the SD card, you
should unmount all of these partitions.

• In the terminal, write the image to the card with the command below, making sure you replace the input file if=
argument with the path to your .img file, and the /dev/sdd in the output file of= argument with the right device
name. This is very important, as you will lose all data on the hard drive if you provide the wrong device name.
Make sure the device name is the name of the whole Micro SD card as described above, not just a partition of
it; for example, sdd, not sdds1, and mmcblk0, not mmcblk0p1.

sudo dd bs=4M if=pynq_z1_image_2016_09_07.img of=/dev/sdd

2.13. Appendix 223

Python productivity for Zynq (Pynq) Documentation, Release 2.0

Please note that block size set to 4M will work most of the time; if not, please try 1M, although this will take consid-
erably longer.

The dd command does not give any information of its progress and so may appear to have frozen; it could take a few
minutes to finish writing to the card.

Instead of dd you can use dcfldd; it will give a progress report about how much has been written.

2.13.3 Assign your computer a static IP address

Instructions may vary slightly depending on the version of operating system you have. You can also search on google
for instructions on how to change your network settings.

You need to set the IP address of your laptop/pc to be in the same range as the board. e.g. if the board is 192.168.2.99,
the laptop/PC can be 192.168.2.x where x is 0-255 (excluding 99, as this is already taken by the board).

You should record your original settings, in case you need to revert to them when finished using PYNQ.

Windows

• Go to Control Panel -> Network and Internet -> Network Connections

• Find your Ethernet network interface, usually Local Area Connection

• Double click on the network interface to open it, and click on Properties

• Select Internet Protocol Version 4 (TCP/IPv4) and click Properties

• Select Use the following IP address

• Set the Ip address to 192.168.2.1 (or any other address in the same range as the board)

• Set the subnet mask to 255.255.255.0 and click OK

Mac OS

• Open System Preferences then open Network

• Click on the connection you want to set manually, usually Ethernet

• From the Configure IPv4 drop down choose Manually

• Set the IP address to 192.168.2.1 (or any other address in the same range as the board)

• Set the subnet mask to 255.255.255.0 and click OK

The other settings can be left blank.

Linux

• Edit this file (replace gedit with your preferred text editor):

sudo gedit /etc/network/interfaces

The file usually looks like this:

auto lo eth0
iface lo inet loopback
iface eth0 inet dynamic

224 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

• Make the following change to set the eth0 interface to the static IP address 192.168.2.1

iface eth0 inet static
address 192.168.2.1
netmask 255.255.255.0

Your file should look like this:

auto lo eth0
iface lo inet loopback
iface eth0 inet static

address 192.168.2.1
netmask 255.255.255.0

2.14 Change Log

2.14.1 Version 2.1

Image release: pynq_z1_v2.1

Documentation updated 21 Feb 2018

• Overlay Changes

– All overlays updated to build with Vivado 2017.4

– Hierarchical IPs’ port names refactored for readability and portability

– The IOP hierarchical blocks are renamed from iop_1, 2, 3 to iop_pmoda, iop_pmodb, and iop_arduino

– The Microblaze subsystem I/O controllers were renamed to be iop agnostic

• Base Overlay Changes

– The onboard switches and LEDs controlled are now controlled by two AXI_GPIO IPs.

– The 2nd I2C (shared) from the Arduino IOP was removed

• IP Changes

– IP refactored for better portability to new boards and interfaces

– IO Switch now with configuration options for pmod, arduino, dual pmod, and custom I/O connectivity

– IO Switch now with standard I/O controller interfaces for IIC and SPI

• Linux changes

– Updated to Ubuntu 16.04 LTS (Xenial)

– Updated kernel to tagged 2017.4 Xilinx release.

– Jupyter now listens on both :80 and :9090 ports

– opencv2.4.9 removed

• Microblaze Programming

– IPython magics added for Jupyter programming of Microblazes

– Microblaze pyprintf, RPC, and Python-callable function generation added.

– New notebooks added to demonstrate the programming APIs

2.14. Change Log 225

Python productivity for Zynq (Pynq) Documentation, Release 2.0

• Repository Changes

– Repository pynqmicroblaze now a package to support Microblaze programming

• Pynq API Changes

– Audio class renamed to AudioDirect to allow for future audio codec classes

• New Python Packages

– netifaces, imutils, scikit-image

• Device Updates

– Removed version-deprecated Grove-I2C Color Sensor

2.14.2 Version 2.0

Image release: pynq_z1_v2.0

Documentation updated: 18 Aug 2017

• Overlay changes

– New logictools overlay

– Updated to new Trace Analyzer IP in the base overlay

• Repository Changes

– Repository restructured to provide better support for multiple platforms

– Repository now supports direct pip install

* update_pynq.sh is now deprecated

• PYNQ Image build flow now available

• Pynq API Changes

– pynq.lib combines previous packages: pynq.board, pynq.iop, pynq.drivers

– The pynq.iop subpackage has been restructured into lib.arduino and lib.pmod

For example:

from pynq.iop import Arduino_Analog

is replaced by:

from pynq.lib.arduino import Arduino_Analog

– Overlay() automatically downloads an overlays on instantiation by default. Explicit .download() is
not required

– DMA driver replaced with new version

The buffer is no longer owned by the DMA driver and should instead be allocated using
Xlnk.cma_array. Driver exposes both directions of the DMA engine. For example:

send_buffer = xlnk.cma_array(1024, np.float32)
dma.sendchannel.transfer(send_buffer)
dma.wait()
wait dma.wait_async() also available in coroutines

226 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

– New Video subsystem with support for openCV style frame passing, color space transforms, and
grayscale conversion

– New PynqMicroblaze parent class to implement any PYNQ MicroBlaze subsystem

– New DefaultIP driver to access MMIO, interrupts and GPIO for an IP and is used as the base class for
all IP drivers

– New DefaultHierarchy driver to access contained IP as attributes and is used as the base class for all
hierarchy drivers

– New AxiGPIO driver

• Linux changes

– Addition USB Ethernet drivers added

– Start-up process added to systemd services

• New Python Packages

– cython

• IP changes

– Updated Trace Analyzer, deprecated Trace Buffer

– Updated Video subsytem with added HLS IP to do color space transforms, and grayscale conversion

– Added new logictools overlay IP: Pattern Generator, Boolean Generator, FSM Generator

• Documentation changes

– Restructured documentation

– Added PYNQ Overlays section describing each overlay and its hardware components

– Added PYNQ Libraries section descriping Python API for each hardware component

– Added pynq Package section for Python Docstrings

– Creating Overlays section renamed to Overlay Design Methodology

– Added PYNQ SD Card section describing PYNQ image build process

2.14.3 Version 1.4

Image release: pynq_z1_image_2016_02_10

Documentation updated: 10 Feb 2017

• Xilinx Linux kernel upgraded to 4.6.0

• Added Linux Packages

– Python3.6

– iwconfig

– iwlist

– microblaze-gcc

• New Python Packages

– asyncio

– uvloop

2.14. Change Log 227

Python productivity for Zynq (Pynq) Documentation, Release 2.0

– transitions

– pygraphviz

– pyeda

• Updated Python Packages

– pynq

– Jupyter Notebook Extension added

– IPython upgraded to support Python 3.6

– pip

• Other changes

– Jupyter extensions

– reveal.js updated

– update_pynq.sh

– wavedrom.js

• Base overlay changes

– IOP interface to DDR added (Pmod and Arduino IOP)

– Interrupt controller from overlay to PS added. IOP GPIO connected to interrupt controller.

– Arduino GPIO base address has changed due to merge of GPIO into a single block. ar-
duino_grove_ledbar and arduino_grove_buzzer compiled binaries are not backward compatible with
previous Pynq overlay/image.

• Pynq API/driver changes

– TraceBuffer: Bit masks are not required. Only pins should be specified.

– PL: pl_dict returns an integer type for any base ad-
dresshttp://pynq.readthedocs.io/en/latest/4_programming_python.html / address range.

– Video: Video mode constants are exposed outside the class.

– Microblaze binaries for IOP updated.

– Xlnk() driver updated, with better support for SDX 2016.3. Removed the customized Xlnk() drivers
and use the libsds version.

• Added new iop modules

– arduino_lcd18

• Added Notebooks

– audio (updated)

– arduino_lcd (new)

– utilities (new)

– asyncio (new)

• Documentation changes

– New section on peripherals and interfaces

– New section on using peripherals in your applications

228 Chapter 2. Summary

Python productivity for Zynq (Pynq) Documentation, Release 2.0

– New section on Asyncio/Interrupts

– New section on trace buffer

2.14.4 Version 1.3

Image release: pynq_z1_image_2016_09_14

Documentation updated: 16 Dec 2016

• Added new iop modules to docs

– Arduino Grove Color

– Arduino Grove DLight

– Arduino Grove Ear HR

– Arduino Grove Finger HR

– Arduino Grove Haptic motor

– Arduino Grove TH02

– Pmod Color

– Pmod DLight

– Pmod Ear HR

– Pmod Finger HR

– Pmod Haptic motor

– Pmod TH02

• Added USB WiFI driver

2.14. Change Log 229

Python productivity for Zynq (Pynq) Documentation, Release 2.0

230 Chapter 2. Summary

Python Module Index

p
pynq.gpio, 117
pynq.interrupt, 116
pynq.lib.arduino.arduino_analog, 143
pynq.lib.arduino.arduino_grove_adc, 145
pynq.lib.arduino.arduino_grove_buzzer,

147
pynq.lib.arduino.arduino_grove_ear_hr,

147
pynq.lib.arduino.arduino_grove_finger_hr,

148
pynq.lib.arduino.arduino_grove_haptic_motor,

148
pynq.lib.arduino.arduino_grove_imu, 149
pynq.lib.arduino.arduino_grove_ledbar,

151
pynq.lib.arduino.arduino_grove_light,

152
pynq.lib.arduino.arduino_grove_oled, 153
pynq.lib.arduino.arduino_grove_pir, 154
pynq.lib.arduino.arduino_grove_th02, 154
pynq.lib.arduino.arduino_grove_tmp, 155
pynq.lib.arduino.arduino_io, 156
pynq.lib.arduino.arduino_lcd18, 157
pynq.lib.audio, 118
pynq.lib.axigpio, 122
pynq.lib.button, 124
pynq.lib.dma, 125
pynq.lib.led, 128
pynq.lib.logictools.boolean_generator,

185
pynq.lib.logictools.fsm_generator, 186
pynq.lib.logictools.pattern_generator,

191
pynq.lib.logictools.trace_analyzer, 194
pynq.lib.pmod.pmod_adc, 160
pynq.lib.pmod.pmod_als, 162
pynq.lib.pmod.pmod_cable, 163
pynq.lib.pmod.pmod_dac, 164

pynq.lib.pmod.pmod_dpot, 165
pynq.lib.pmod.pmod_grove_adc, 173
pynq.lib.pmod.pmod_grove_buzzer, 175
pynq.lib.pmod.pmod_grove_dlight, 175
pynq.lib.pmod.pmod_grove_ear_hr, 176
pynq.lib.pmod.pmod_grove_finger_hr, 176
pynq.lib.pmod.pmod_grove_haptic_motor,

177
pynq.lib.pmod.pmod_grove_imu, 178
pynq.lib.pmod.pmod_grove_ledbar, 179
pynq.lib.pmod.pmod_grove_light, 180
pynq.lib.pmod.pmod_grove_oled, 181
pynq.lib.pmod.pmod_grove_pir, 182
pynq.lib.pmod.pmod_grove_th02, 183
pynq.lib.pmod.pmod_grove_tmp, 184
pynq.lib.pmod.pmod_iic, 165
pynq.lib.pmod.pmod_io, 166
pynq.lib.pmod.pmod_led8, 167
pynq.lib.pmod.pmod_oled, 168
pynq.lib.pmod.pmod_pwm, 169
pynq.lib.pmod.pmod_tc1, 169
pynq.lib.pmod.pmod_timer, 171
pynq.lib.pmod.pmod_tmp2, 172
pynq.lib.pynqmicroblaze.bsp, 134
pynq.lib.pynqmicroblaze.compile, 131
pynq.lib.pynqmicroblaze.magic, 133
pynq.lib.pynqmicroblaze.pynqmicroblaze,

129
pynq.lib.pynqmicroblaze.rpc, 131
pynq.lib.pynqmicroblaze.streams, 133
pynq.lib.rgbled, 134
pynq.lib.switch, 135
pynq.lib.usb_wifi, 136
pynq.lib.video, 137
pynq.mmio, 197
pynq.overlay, 197
pynq.pl, 202
pynq.ps, 200
pynq.xlnk, 206

231

Python productivity for Zynq (Pynq) Documentation, Release 2.0

232 Python Module Index

Index

Symbols
_gpio (pynq.overlay.DefaultIP attribute), 198
_interrupts (pynq.overlay.DefaultIP attribute), 198
_mmio (pynq.lib.rgbled.RGBLED attribute), 135
_rgbleds_val (pynq.lib.rgbled.RGBLED attribute), 135

A
activeframe (pynq.lib.video.AxiVDMA.MM2SChannel

attribute), 137
activeframe (pynq.lib.video.AxiVDMA.S2MMChannel

attribute), 138
add_bsp() (in module pynq.lib.pynqmicroblaze.bsp), 134
add_module_path() (in module

pynq.lib.pynqmicroblaze.bsp), 134
address (pynq.ps.Register attribute), 202
analysis_group (pynq.lib.logictools.pattern_generator.PatternGenerator

attribute), 192
analysis_group_name (pynq.lib.logictools.pattern_generator.PatternGenerator

attribute), 192
analysis_names (pynq.lib.logictools.pattern_generator.PatternGenerator

attribute), 192
analysis_pins (pynq.lib.logictools.pattern_generator.PatternGenerator

attribute), 192
analyze() (pynq.lib.logictools.boolean_generator.BooleanGenerator

method), 185
analyze() (pynq.lib.logictools.fsm_generator.FSMGenerator

method), 188
analyze() (pynq.lib.logictools.pattern_generator.PatternGenerator

method), 192
analyze() (pynq.lib.logictools.trace_analyzer.TraceAnalyzer

method), 194
analyzer (pynq.lib.logictools.boolean_generator.BooleanGenerator

attribute), 185
analyzer (pynq.lib.logictools.fsm_generator.FSMGenerator

attribute), 188
analyzer (pynq.lib.logictools.pattern_generator.PatternGenerator

attribute), 192
Arduino_Analog (class in

pynq.lib.arduino.arduino_analog), 143

Arduino_IO (class in pynq.lib.arduino.arduino_io), 156
Arduino_LCD18 (class in

pynq.lib.arduino.arduino_lcd18), 157
arg_interfaces (pynq.lib.pynqmicroblaze.rpc.FuncAdapter

attribute), 131
array (pynq.mmio.MMIO attribute), 197
AudioADAU1761 (class in pynq.lib.audio), 118
AudioDirect (class in pynq.lib.audio), 120
axi_vdma (pynq.lib.video.HDMIWrapper attribute), 142
AxiGPIO (class in pynq.lib.axigpio), 122
AxiGPIO.Channel (class in pynq.lib.axigpio), 122
AxiGPIO.InOut (class in pynq.lib.axigpio), 123
AxiGPIO.Input (class in pynq.lib.axigpio), 123
AxiGPIO.Output (class in pynq.lib.axigpio), 124
AxiVDMA (class in pynq.lib.video), 137
AxiVDMA.MM2SChannel (class in pynq.lib.video), 137
AxiVDMA.S2MMChannel (class in pynq.lib.video), 138

B
base_addr (pynq.mmio.MMIO attribute), 197
bindto (pynq.lib.audio.AudioADAU1761 attribute), 119
bindto (pynq.lib.audio.AudioDirect attribute), 121
bindto (pynq.lib.axigpio.AxiGPIO attribute), 124
bindto (pynq.lib.dma.DMA attribute), 125
bindto (pynq.lib.video.AxiVDMA attribute), 139
bindto (pynq.lib.video.ColorConverter attribute), 139
bindto (pynq.lib.video.PixelPacker attribute), 142
bitfile_name (pynq.overlay.Overlay attribute), 199
bitfile_name (pynq.pl.Bitstream attribute), 203
bitfile_name (pynq.pl.PL attribute), 203
bitfile_name (pynq.pl.PLMeta attribute), 204
bits_per_pixel (pynq.lib.video.PixelFormat attribute), 142
bits_per_pixel (pynq.lib.video.PixelPacker attribute), 142
bits_per_pixel (pynq.lib.video.VideoMode attribute), 143
Bitstream (class in pynq.pl), 202
bitstream (pynq.overlay.Overlay attribute), 199
BooleanGenerator (class in

pynq.lib.logictools.boolean_generator), 185
BSPInstance (class in pynq.lib.pynqmicroblaze.bsp), 134
buf (pynq.lib.dma.LegacyDMA attribute), 126

233

Python productivity for Zynq (Pynq) Documentation, Release 2.0

buf_manager (pynq.lib.arduino.arduino_lcd18.Arduino_LCD18
attribute), 157

buffer (pynq.lib.audio.AudioADAU1761 attribute), 119
buffer (pynq.lib.audio.AudioDirect attribute), 121
buffer_space() (pynq.lib.pynqmicroblaze.streams.SimpleMBChannel

method), 133
buffer_space() (pynq.lib.pynqmicroblaze.streams.SimpleMBStream

method), 134
bufLength (pynq.lib.dma.LegacyDMA attribute), 126
bufmap (pynq.xlnk.Xlnk attribute), 206
Button (class in pynq.lib.button), 124
bValue (pynq.lib.arduino.arduino_grove_tmp.Grove_TMP

attribute), 155
bValue (pynq.lib.pmod.pmod_grove_tmp.Grove_TMP at-

tribute), 184
bypass() (pynq.lib.audio.AudioADAU1761 method), 119
bypass_start() (pynq.lib.audio.AudioDirect method), 121
bypass_stop() (pynq.lib.audio.AudioDirect method), 121
bytes_available() (pynq.lib.pynqmicroblaze.streams.SimpleMBChannel

method), 133
bytes_available() (pynq.lib.pynqmicroblaze.streams.SimpleMBStream

method), 134
bytes_per_Pixel (pynq.lib.video.VideoMode attribute),

143

C
cable (pynq.lib.pmod.pmod_cable.Pmod_Cable at-

tribute), 163
call_ast (pynq.lib.pynqmicroblaze.rpc.FuncAdapter at-

tribute), 131
call_async() (pynq.lib.pynqmicroblaze.rpc.MicroblazeFunction

method), 132
check_duplicate() (in module

pynq.lib.logictools.fsm_generator), 189
check_moore() (in module

pynq.lib.logictools.fsm_generator), 189
check_num_bits() (in module

pynq.lib.logictools.fsm_generator), 190
check_pin_conflict() (in module

pynq.lib.logictools.fsm_generator), 190
check_pins() (in module

pynq.lib.logictools.fsm_generator), 190
checkhierarchy() (pynq.lib.pynqmicroblaze.pynqmicroblaze.MicroblazeHierarchy

static method), 129
checkhierarchy() (pynq.lib.video.HDMIIn static method),

140
checkhierarchy() (pynq.lib.video.HDMIInFrontend static

method), 140
checkhierarchy() (pynq.lib.video.HDMIOut static

method), 141
checkhierarchy() (pynq.lib.video.HDMIOutFrontend

static method), 142
checkhierarchy() (pynq.lib.video.HDMIWrapper static

method), 142

checkhierarchy() (pynq.overlay.DefaultHierarchy static
method), 198

clear() (pynq.lib.arduino.arduino_grove_oled.Grove_OLED
method), 153

clear() (pynq.lib.arduino.arduino_lcd18.Arduino_LCD18
method), 157

clear() (pynq.lib.pmod.pmod_grove_oled.Grove_OLED
method), 181

clear() (pynq.lib.pmod.pmod_oled.Pmod_OLED
method), 168

clear() (pynq.lib.pynqmicroblaze.pynqmicroblaze.MBInterruptEvent
method), 129

clear_dict() (pynq.pl.PLMeta method), 204
clear_wave() (pynq.lib.logictools.boolean_generator.BooleanGenerator

method), 185
clear_wave() (pynq.lib.logictools.fsm_generator.FSMGenerator

method), 188
clear_wave() (pynq.lib.logictools.pattern_generator.PatternGenerator

method), 192
client_request() (pynq.pl.PLMeta method), 204
clk_period_ns (pynq.lib.pmod.pmod_timer.Pmod_Timer

attribute), 171
Clocks (class in pynq.ps), 200
ClocksMeta (class in pynq.ps), 201
close() (pynq.lib.video.HDMIIn method), 140
close() (pynq.lib.video.HDMIOut method), 141
close() (pynq.xlnk.ContiguousArray method), 206
cma_alloc() (pynq.xlnk.Xlnk method), 207
cma_array() (pynq.xlnk.Xlnk method), 207
cma_cast() (pynq.xlnk.Xlnk static method), 208
cma_free() (pynq.xlnk.Xlnk method), 208
cma_get_buffer() (pynq.xlnk.Xlnk method), 208
cma_get_phy_addr() (pynq.xlnk.Xlnk method), 208
cma_memcopy() (pynq.xlnk.Xlnk static method), 208
cma_stats() (pynq.xlnk.Xlnk method), 209
color_convert (pynq.lib.video.HDMIIn attribute), 140
color_convert (pynq.lib.video.HDMIOut attribute), 141
ColorConverter (class in pynq.lib.video), 139
colorspace (pynq.lib.video.ColorConverter attribute), 139
colorspace (pynq.lib.video.HDMIIn attribute), 140
colorspace (pynq.lib.video.HDMIOut attribute), 141
Configuration (pynq.lib.dma.LegacyDMA attribute), 126
configure() (pynq.lib.audio.AudioADAU1761 method),

119
configure() (pynq.lib.dma.LegacyDMA method), 126
configure() (pynq.lib.video.HDMIIn method), 140
configure() (pynq.lib.video.HDMIOut method), 141
connect() (pynq.lib.logictools.boolean_generator.BooleanGenerator

method), 185
connect() (pynq.lib.logictools.fsm_generator.FSMGenerator

method), 188
connect() (pynq.lib.logictools.pattern_generator.PatternGenerator

method), 192
connect() (pynq.lib.usb_wifi.Usb_Wifi method), 136

234 Index

Python productivity for Zynq (Pynq) Documentation, Release 2.0

ConstPointerWrapper (class in
pynq.lib.pynqmicroblaze.rpc), 131

ContiguousArray (class in pynq.xlnk), 206
cpu_mhz (pynq.ps.Clocks attribute), 201
cpu_mhz (pynq.ps.ClocksMeta attribute), 201
cr_addr (pynq.lib.pmod.pmod_iic.Pmod_IIC attribute),

165
create_buf() (pynq.lib.dma.LegacyDMA method), 126

D
debug (pynq.mmio.MMIO attribute), 197
decode() (pynq.lib.logictools.trace_analyzer.TraceAnalyzer

method), 195
DefaultConfig (pynq.lib.dma.LegacyDMA attribute), 126
DefaultHierarchy (class in pynq.overlay), 197
DefaultIP (class in pynq.overlay), 198
dependencies() (in module

pynq.lib.pynqmicroblaze.compile), 131
deselect_inputs() (pynq.lib.audio.AudioADAU1761

method), 119
desiredframe (pynq.lib.video.AxiVDMA.MM2SChannel

attribute), 137
desiredframe (pynq.lib.video.AxiVDMA.S2MMChannel

attribute), 138
DeviceId (pynq.lib.dma.LegacyDMA attribute), 126
direction (pynq.gpio.GPIO attribute), 117
direction (pynq.lib.arduino.arduino_io.Arduino_IO at-

tribute), 156
direction (pynq.lib.dma.LegacyDMA attribute), 126
direction (pynq.lib.pmod.pmod_cable.Pmod_Cable at-

tribute), 163
direction (pynq.lib.pmod.pmod_grove_pir.Grove_PIR at-

tribute), 183
direction (pynq.lib.pmod.pmod_io.Pmod_IO attribute),

166
disconnect() (pynq.lib.logictools.boolean_generator.BooleanGenerator

method), 185
disconnect() (pynq.lib.logictools.fsm_generator.FSMGenerator

method), 188
disconnect() (pynq.lib.logictools.pattern_generator.PatternGenerator

method), 192
display() (pynq.lib.arduino.arduino_lcd18.Arduino_LCD18

method), 157
display_async() (pynq.lib.arduino.arduino_lcd18.Arduino_LCD18

method), 158
DMA (class in pynq.lib.dma), 125
DMA_BIDIRECTIONAL (pynq.lib.dma.LegacyDMA

attribute), 126
DMA_FROM_DEV (pynq.lib.dma.LegacyDMA at-

tribute), 126
DMA_TO_DEV (pynq.lib.dma.LegacyDMA attribute),

126
DMA_TRANSFER_LIMIT_BYTES

(pynq.lib.dma.LegacyDMA attribute), 126

DMAengine (pynq.lib.dma.LegacyDMA attribute), 126
DMAinstance (pynq.lib.dma.LegacyDMA attribute), 126
DocumentHierarchy() (in module pynq.overlay), 198
DocumentOverlay() (in module pynq.overlay), 198
download() (pynq.overlay.Overlay method), 199
download() (pynq.pl.Bitstream method), 203
draw_filled_rectangle() (pynq.lib.arduino.arduino_lcd18.Arduino_LCD18

method), 158
draw_line() (pynq.lib.arduino.arduino_lcd18.Arduino_LCD18

method), 159
draw_line() (pynq.lib.pmod.pmod_oled.Pmod_OLED

method), 168
draw_rect() (pynq.lib.pmod.pmod_oled.Pmod_OLED

method), 168
drr_addr (pynq.lib.pmod.pmod_iic.Pmod_IIC attribute),

166
dst_samples (pynq.lib.logictools.pattern_generator.PatternGenerator

attribute), 192
dtr_addr (pynq.lib.pmod.pmod_iic.Pmod_IIC attribute),

165

E
event_count() (pynq.lib.pmod.pmod_timer.Pmod_Timer

method), 171
event_detected() (pynq.lib.pmod.pmod_timer.Pmod_Timer

method), 171
expand_transition() (in module

pynq.lib.logictools.fsm_generator), 190
expressions (pynq.lib.logictools.boolean_generator.BooleanGenerator

attribute), 185

F
fclk0_mhz (pynq.ps.Clocks attribute), 201
fclk0_mhz (pynq.ps.ClocksMeta attribute), 201
fclk1_mhz (pynq.ps.Clocks attribute), 201
fclk1_mhz (pynq.ps.ClocksMeta attribute), 201
fclk2_mhz (pynq.ps.Clocks attribute), 201
fclk2_mhz (pynq.ps.ClocksMeta attribute), 201
fclk3_mhz (pynq.ps.Clocks attribute), 201
fclk3_mhz (pynq.ps.ClocksMeta attribute), 201
ffi (pynq.lib.dma.LegacyDMA attribute), 127
ffi (pynq.xlnk.Xlnk attribute), 206, 209
flush() (pynq.xlnk.ContiguousArray method), 206
framedelay (pynq.lib.video.AxiVDMA.MM2SChannel

attribute), 137
free_buf() (pynq.lib.dma.LegacyDMA method), 127
freebuffer() (pynq.xlnk.ContiguousArray method), 206
frequency_mhz (pynq.lib.logictools.boolean_generator.BooleanGenerator

attribute), 185
frequency_mhz (pynq.lib.logictools.fsm_generator.FSMGenerator

attribute), 188
frequency_mhz (pynq.lib.logictools.pattern_generator.PatternGenerator

attribute), 192
frontend (pynq.lib.video.HDMIIn attribute), 140

Index 235

Python productivity for Zynq (Pynq) Documentation, Release 2.0

frontend (pynq.lib.video.HDMIOut attribute), 141
fsm_spec (pynq.lib.logictools.fsm_generator.FSMGenerator

attribute), 187
FSMGenerator (class in

pynq.lib.logictools.fsm_generator), 186
FuncAdapter (class in pynq.lib.pynqmicroblaze.rpc), 131
FuncDefVisitor (class in pynq.lib.pynqmicroblaze.rpc),

131

G
gen_network_file() (pynq.lib.usb_wifi.Usb_Wifi

method), 136
generate() (pynq.lib.pmod.pmod_pwm.Pmod_PWM

method), 169
generate_pulse() (pynq.lib.pmod.pmod_timer.Pmod_Timer

method), 172
get_accl() (pynq.lib.arduino.arduino_grove_imu.Grove_IMU

method), 149
get_accl() (pynq.lib.pmod.pmod_grove_imu.Grove_IMU

method), 178
get_altitude() (pynq.lib.arduino.arduino_grove_imu.Grove_IMU

method), 149
get_altitude() (pynq.lib.pmod.pmod_grove_imu.Grove_IMU

method), 178
get_atm() (pynq.lib.arduino.arduino_grove_imu.Grove_IMU

method), 150
get_atm() (pynq.lib.pmod.pmod_grove_imu.Grove_IMU

method), 178
get_bram_addr_offsets() (in module

pynq.lib.logictools.fsm_generator), 190
get_buf() (pynq.lib.dma.LegacyDMA method), 127
get_compass() (pynq.lib.arduino.arduino_grove_imu.Grove_IMU

method), 150
get_compass() (pynq.lib.pmod.pmod_grove_imu.Grove_IMU

method), 178
get_gpio_base() (pynq.gpio.GPIO static method), 117
get_gpio_pin() (pynq.gpio.GPIO static method), 117
get_gyro() (pynq.lib.arduino.arduino_grove_imu.Grove_IMU

method), 150
get_gyro() (pynq.lib.pmod.pmod_grove_imu.Grove_IMU

method), 178
get_heading() (pynq.lib.arduino.arduino_grove_imu.Grove_IMU

method), 150
get_heading() (pynq.lib.pmod.pmod_grove_imu.Grove_IMU

method), 178
get_log() (pynq.lib.arduino.arduino_analog.Arduino_Analog

method), 144
get_log() (pynq.lib.arduino.arduino_grove_adc.Grove_ADC

method), 145
get_log() (pynq.lib.arduino.arduino_grove_finger_hr.Grove_FingerHR

method), 148
get_log() (pynq.lib.arduino.arduino_grove_light.Grove_Light

method), 152

get_log() (pynq.lib.arduino.arduino_grove_th02.Grove_TH02
method), 155

get_log() (pynq.lib.arduino.arduino_grove_tmp.Grove_TMP
method), 155

get_log() (pynq.lib.pmod.pmod_adc.Pmod_ADC
method), 160

get_log() (pynq.lib.pmod.pmod_als.Pmod_ALS method),
162

get_log() (pynq.lib.pmod.pmod_grove_adc.Grove_ADC
method), 173

get_log() (pynq.lib.pmod.pmod_grove_finger_hr.Grove_FingerHR
method), 176

get_log() (pynq.lib.pmod.pmod_grove_light.Grove_Light
method), 181

get_log() (pynq.lib.pmod.pmod_grove_th02.Grove_TH02
method), 183

get_log() (pynq.lib.pmod.pmod_grove_tmp.Grove_TMP
method), 184

get_log() (pynq.lib.pmod.pmod_tc1.Pmod_TC1 method),
170

get_log() (pynq.lib.pmod.pmod_tmp2.Pmod_TMP2
method), 172

get_log_raw() (pynq.lib.arduino.arduino_analog.Arduino_Analog
method), 144

get_log_raw() (pynq.lib.arduino.arduino_grove_adc.Grove_ADC
method), 145

get_log_raw() (pynq.lib.pmod.pmod_adc.Pmod_ADC
method), 160

get_log_raw() (pynq.lib.pmod.pmod_grove_adc.Grove_ADC
method), 173

get_ndarray() (pynq.lib.dma.LegacyDMA method), 127
get_period_ns() (pynq.lib.pmod.pmod_timer.Pmod_Timer

method), 172
get_pressure() (pynq.lib.arduino.arduino_grove_imu.Grove_IMU

method), 150
get_pressure() (pynq.lib.pmod.pmod_grove_imu.Grove_IMU

method), 178
get_temperature() (pynq.lib.arduino.arduino_grove_imu.Grove_IMU

method), 150
get_temperature() (pynq.lib.pmod.pmod_grove_imu.Grove_IMU

method), 179
get_tilt_heading() (pynq.lib.arduino.arduino_grove_imu.Grove_IMU

method), 150
get_tilt_heading() (pynq.lib.pmod.pmod_grove_imu.Grove_IMU

method), 179
get_transactions() (pynq.lib.logictools.trace_analyzer.TraceAnalyzer

method), 195
get_tri_state_pins() (in module

pynq.lib.logictools.trace_analyzer), 196
GPIO (class in pynq.gpio), 117
gpio (pynq.lib.audio.AudioDirect attribute), 121
gpio_dict (pynq.overlay.Overlay attribute), 199
gpio_dict (pynq.pl.PL attribute), 203
gpio_dict (pynq.pl.PLMeta attribute), 204

236 Index

Python productivity for Zynq (Pynq) Documentation, Release 2.0

gr_pin (pynq.lib.arduino.arduino_analog.Arduino_Analog
attribute), 144

Grove_ADC (class in pynq.lib.arduino.arduino_grove_adc),
145

Grove_ADC (class in pynq.lib.pmod.pmod_grove_adc),
173

Grove_Buzzer (class in
pynq.lib.arduino.arduino_grove_buzzer),
147

Grove_Buzzer (class in
pynq.lib.pmod.pmod_grove_buzzer), 175

Grove_Dlight (class in
pynq.lib.pmod.pmod_grove_dlight), 175

Grove_EarHR (class in
pynq.lib.arduino.arduino_grove_ear_hr),
147

Grove_EarHR (class in
pynq.lib.pmod.pmod_grove_ear_hr), 176

Grove_FingerHR (class in
pynq.lib.arduino.arduino_grove_finger_hr),
148

Grove_FingerHR (class in
pynq.lib.pmod.pmod_grove_finger_hr), 176

Grove_HapticMotor (class in
pynq.lib.arduino.arduino_grove_haptic_motor),
148

Grove_HapticMotor (class in
pynq.lib.pmod.pmod_grove_haptic_motor),
177

Grove_IMU (class in pynq.lib.arduino.arduino_grove_imu),
149

Grove_IMU (class in pynq.lib.pmod.pmod_grove_imu),
178

Grove_LEDbar (class in
pynq.lib.arduino.arduino_grove_ledbar),
151

Grove_LEDbar (class in
pynq.lib.pmod.pmod_grove_ledbar), 179

Grove_Light (class in
pynq.lib.arduino.arduino_grove_light), 152

Grove_Light (class in pynq.lib.pmod.pmod_grove_light),
180

Grove_OLED (class in
pynq.lib.arduino.arduino_grove_oled), 153

Grove_OLED (class in
pynq.lib.pmod.pmod_grove_oled), 181

Grove_PIR (class in pynq.lib.arduino.arduino_grove_pir),
154

Grove_PIR (class in pynq.lib.pmod.pmod_grove_pir),
182

Grove_TH02 (class in
pynq.lib.arduino.arduino_grove_th02), 154

Grove_TH02 (class in pynq.lib.pmod.pmod_grove_th02),
183

Grove_TMP (class in pynq.lib.arduino.arduino_grove_tmp),
155

Grove_TMP (class in pynq.lib.pmod.pmod_grove_tmp),
184

H
handle_timeout() (pynq.lib.dma.timeout method), 128
hdmi_in (pynq.lib.video.HDMIWrapper attribute), 142
hdmi_out (pynq.lib.video.HDMIWrapper attribute), 142
HDMIIn (class in pynq.lib.video), 139
HDMIInFrontend (class in pynq.lib.video), 140
HDMIOut (class in pynq.lib.video), 141
HDMIOutFrontend (class in pynq.lib.video), 141
HDMIWrapper (class in pynq.lib.video), 142
height (pynq.lib.video.VideoMode attribute), 143
hierarchy_dict (pynq.pl.PL attribute), 203
hierarchy_dict (pynq.pl.PLMeta attribute), 204

I
iic_addr (pynq.lib.pmod.pmod_iic.Pmod_IIC attribute),

165
iic_index (pynq.lib.audio.AudioADAU1761 attribute),

119
in_color (pynq.lib.video.PixelFormat attribute), 142
index (pynq.gpio.GPIO attribute), 117
index (pynq.lib.arduino.arduino_io.Arduino_IO at-

tribute), 156
index (pynq.lib.button.Button attribute), 125
index (pynq.lib.led.LED attribute), 128
index (pynq.lib.pmod.pmod_cable.Pmod_Cable at-

tribute), 163
index (pynq.lib.pmod.pmod_grove_pir.Grove_PIR

attribute), 183
index (pynq.lib.pmod.pmod_io.Pmod_IO attribute), 166
index (pynq.lib.pmod.pmod_led8.Pmod_LED8 attribute),

167
index (pynq.lib.rgbled.RGBLED attribute), 135
index (pynq.lib.switch.Switch attribute), 135
info() (pynq.lib.audio.AudioADAU1761 static method),

119
info() (pynq.lib.audio.AudioDirect static method), 121
input_pins (pynq.lib.logictools.boolean_generator.BooleanGenerator

attribute), 185
input_pins (pynq.lib.logictools.fsm_generator.FSMGenerator

attribute), 187
Interrupt (class in pynq.interrupt), 116
interrupt (pynq.lib.pynqmicroblaze.pynqmicroblaze.PynqMicroblaze

attribute), 130
interrupt_controllers (pynq.overlay.Overlay attribute),

199
interrupt_controllers (pynq.pl.PL attribute), 203
interrupt_controllers (pynq.pl.PLMeta attribute), 204
interrupt_pins (pynq.overlay.Overlay attribute), 199
interrupt_pins (pynq.pl.PL attribute), 203

Index 237

Python productivity for Zynq (Pynq) Documentation, Release 2.0

interrupt_pins (pynq.pl.PLMeta attribute), 205
InterruptMBStream (class in

pynq.lib.pynqmicroblaze.streams), 133
intf_spec (pynq.lib.logictools.boolean_generator.BooleanGenerator

attribute), 185
intf_spec (pynq.lib.logictools.fsm_generator.FSMGenerator

attribute), 187
intf_spec (pynq.lib.logictools.pattern_generator.PatternGenerator

attribute), 191
invalidate() (pynq.xlnk.ContiguousArray method), 206
iop_switch_config (pynq.lib.pmod.pmod_led8.Pmod_LED8

attribute), 167
ip_dict (pynq.overlay.Overlay attribute), 199
ip_dict (pynq.pl.PL attribute), 203
ip_dict (pynq.pl.PLMeta attribute), 205
ip_name (pynq.lib.pynqmicroblaze.pynqmicroblaze.PynqMicroblaze

attribute), 129
irqframecount (pynq.lib.video.AxiVDMA.S2MMChannel

attribute), 138
is_loaded() (pynq.overlay.Overlay method), 200
is_playing() (pynq.lib.arduino.arduino_grove_haptic_motor.Grove_HapticMotor

method), 148
is_playing() (pynq.lib.pmod.pmod_grove_haptic_motor.Grove_HapticMotor

method), 177

L
LED (class in pynq.lib.led), 128
LegacyDMA (class in pynq.lib.dma), 125
length (pynq.mmio.MMIO attribute), 197
LIB_SEARCH_PATH (pynq.lib.dma.LegacyDMA

attribute), 126
load() (pynq.lib.audio.AudioADAU1761 method), 119
load() (pynq.lib.audio.AudioDirect method), 121
load_ip_data() (pynq.overlay.Overlay method), 200
load_ip_data() (pynq.pl.PLMeta method), 205
log_interval_ms (pynq.lib.arduino.arduino_analog.Arduino_Analog

attribute), 143
log_interval_ms (pynq.lib.arduino.arduino_grove_adc.Grove_ADC

attribute), 145
log_interval_ms (pynq.lib.arduino.arduino_grove_finger_hr.Grove_FingerHR

attribute), 148
log_interval_ms (pynq.lib.arduino.arduino_grove_light.Grove_Light

attribute), 152
log_interval_ms (pynq.lib.arduino.arduino_grove_th02.Grove_TH02

attribute), 155
log_interval_ms (pynq.lib.arduino.arduino_grove_tmp.Grove_TMP

attribute), 155
log_interval_ms (pynq.lib.pmod.pmod_als.Pmod_ALS

attribute), 162
log_interval_ms (pynq.lib.pmod.pmod_grove_adc.Grove_ADC

attribute), 173
log_interval_ms (pynq.lib.pmod.pmod_grove_finger_hr.Grove_FingerHR

attribute), 176

log_interval_ms (pynq.lib.pmod.pmod_grove_light.Grove_Light
attribute), 180

log_interval_ms (pynq.lib.pmod.pmod_grove_th02.Grove_TH02
attribute), 183

log_interval_ms (pynq.lib.pmod.pmod_grove_tmp.Grove_TMP
attribute), 184

log_interval_ms (pynq.lib.pmod.pmod_tc1.Pmod_TC1
attribute), 169

log_interval_ms (pynq.lib.pmod.pmod_tmp2.Pmod_TMP2
attribute), 172

log_running (pynq.lib.arduino.arduino_analog.Arduino_Analog
attribute), 143

log_running (pynq.lib.arduino.arduino_grove_adc.Grove_ADC
attribute), 145

log_running (pynq.lib.arduino.arduino_grove_finger_hr.Grove_FingerHR
attribute), 148

log_running (pynq.lib.arduino.arduino_grove_light.Grove_Light
attribute), 152

log_running (pynq.lib.arduino.arduino_grove_th02.Grove_TH02
attribute), 154

log_running (pynq.lib.arduino.arduino_grove_tmp.Grove_TMP
attribute), 155

log_running (pynq.lib.pmod.pmod_adc.Pmod_ADC at-
tribute), 160

log_running (pynq.lib.pmod.pmod_grove_adc.Grove_ADC
attribute), 173

log_running (pynq.lib.pmod.pmod_grove_finger_hr.Grove_FingerHR
attribute), 176

log_running (pynq.lib.pmod.pmod_grove_light.Grove_Light
attribute), 180

log_running (pynq.lib.pmod.pmod_grove_th02.Grove_TH02
attribute), 183

log_running (pynq.lib.pmod.pmod_grove_tmp.Grove_TMP
attribute), 184

logictools_controller (pynq.lib.logictools.boolean_generator.BooleanGenerator
attribute), 185

logictools_controller (pynq.lib.logictools.fsm_generator.FSMGenerator
attribute), 187

logictools_controller (pynq.lib.logictools.pattern_generator.PatternGenerator
attribute), 191

longest_wave (pynq.lib.logictools.pattern_generator.PatternGenerator
attribute), 192

M
magics (pynq.lib.pynqmicroblaze.magic.MicroblazeMagics

attribute), 133
max_wave_length (pynq.lib.logictools.pattern_generator.PatternGenerator

attribute), 193
mb_program (pynq.lib.pynqmicroblaze.pynqmicroblaze.PynqMicroblaze

attribute), 130
MBInterruptEvent (class in

pynq.lib.pynqmicroblaze.pynqmicroblaze),
129

238 Index

Python productivity for Zynq (Pynq) Documentation, Release 2.0

mbtype (pynq.lib.pynqmicroblaze.pynqmicroblaze.MicroblazeHierarchy
attribute), 129

mem (pynq.mmio.MMIO attribute), 197
memapi (pynq.lib.dma.LegacyDMA attribute), 127
merge_to_length() (in module

pynq.lib.logictools.fsm_generator), 191
microblaze (pynq.lib.arduino.arduino_analog.Arduino_Analog

attribute), 143
microblaze (pynq.lib.arduino.arduino_grove_adc.Grove_ADC

attribute), 145
microblaze (pynq.lib.arduino.arduino_grove_buzzer.Grove_Buzzer

attribute), 147
microblaze (pynq.lib.arduino.arduino_grove_ear_hr.Grove_EarHR

attribute), 147
microblaze (pynq.lib.arduino.arduino_grove_finger_hr.Grove_FingerHR

attribute), 148
microblaze (pynq.lib.arduino.arduino_grove_haptic_motor.Grove_HapticMotor

attribute), 148
microblaze (pynq.lib.arduino.arduino_grove_imu.Grove_IMU

attribute), 149
microblaze (pynq.lib.arduino.arduino_grove_ledbar.Grove_LEDbar

attribute), 151
microblaze (pynq.lib.arduino.arduino_grove_light.Grove_Light

attribute), 152
microblaze (pynq.lib.arduino.arduino_grove_oled.Grove_OLED

attribute), 153
microblaze (pynq.lib.arduino.arduino_grove_pir.Grove_PIR

attribute), 154
microblaze (pynq.lib.arduino.arduino_grove_th02.Grove_TH02

attribute), 154
microblaze (pynq.lib.arduino.arduino_grove_tmp.Grove_TMP

attribute), 155
microblaze (pynq.lib.arduino.arduino_io.Arduino_IO at-

tribute), 156
microblaze (pynq.lib.arduino.arduino_lcd18.Arduino_LCD18

attribute), 157
microblaze (pynq.lib.pmod.pmod_adc.Pmod_ADC at-

tribute), 160
microblaze (pynq.lib.pmod.pmod_als.Pmod_ALS at-

tribute), 162
microblaze (pynq.lib.pmod.pmod_cable.Pmod_Cable at-

tribute), 163
microblaze (pynq.lib.pmod.pmod_dac.Pmod_DAC

attribute), 164
microblaze (pynq.lib.pmod.pmod_dpot.Pmod_DPOT at-

tribute), 165
microblaze (pynq.lib.pmod.pmod_grove_adc.Grove_ADC

attribute), 173
microblaze (pynq.lib.pmod.pmod_grove_buzzer.Grove_Buzzer

attribute), 175
microblaze (pynq.lib.pmod.pmod_grove_dlight.Grove_Dlight

attribute), 175
microblaze (pynq.lib.pmod.pmod_grove_ear_hr.Grove_EarHR

attribute), 176

microblaze (pynq.lib.pmod.pmod_grove_finger_hr.Grove_FingerHR
attribute), 176

microblaze (pynq.lib.pmod.pmod_grove_haptic_motor.Grove_HapticMotor
attribute), 177

microblaze (pynq.lib.pmod.pmod_grove_imu.Grove_IMU
attribute), 178

microblaze (pynq.lib.pmod.pmod_grove_ledbar.Grove_LEDbar
attribute), 179

microblaze (pynq.lib.pmod.pmod_grove_light.Grove_Light
attribute), 180

microblaze (pynq.lib.pmod.pmod_grove_oled.Grove_OLED
attribute), 181

microblaze (pynq.lib.pmod.pmod_grove_pir.Grove_PIR
attribute), 182

microblaze (pynq.lib.pmod.pmod_grove_th02.Grove_TH02
attribute), 183

microblaze (pynq.lib.pmod.pmod_grove_tmp.Grove_TMP
attribute), 184

microblaze (pynq.lib.pmod.pmod_iic.Pmod_IIC at-
tribute), 165

microblaze (pynq.lib.pmod.pmod_io.Pmod_IO attribute),
166

microblaze (pynq.lib.pmod.pmod_led8.Pmod_LED8 at-
tribute), 167

microblaze (pynq.lib.pmod.pmod_oled.Pmod_OLED at-
tribute), 168

microblaze (pynq.lib.pmod.pmod_pwm.Pmod_PWM at-
tribute), 169

microblaze (pynq.lib.pmod.pmod_tc1.Pmod_TC1 at-
tribute), 169

microblaze (pynq.lib.pmod.pmod_timer.Pmod_Timer at-
tribute), 171

microblaze (pynq.lib.pmod.pmod_tmp2.Pmod_TMP2 at-
tribute), 172

microblaze() (pynq.lib.pynqmicroblaze.magic.MicroblazeMagics
method), 133

MicroblazeFunction (class in
pynq.lib.pynqmicroblaze.rpc), 132

MicroblazeHierarchy (class in
pynq.lib.pynqmicroblaze.pynqmicroblaze),
129

MicroblazeLibrary (class in
pynq.lib.pynqmicroblaze.rpc), 132

MicroblazeMagics (class in
pynq.lib.pynqmicroblaze.magic), 133

MicroblazeProgram (class in
pynq.lib.pynqmicroblaze.compile), 131

MicroblazeRPC (class in pynq.lib.pynqmicroblaze.rpc),
132

mmap_file (pynq.mmio.MMIO attribute), 197
MMIO (class in pynq.mmio), 197
mmio (pynq.lib.audio.AudioDirect attribute), 121
mmio (pynq.lib.pynqmicroblaze.pynqmicroblaze.PynqMicroblaze

attribute), 130

Index 239

Python productivity for Zynq (Pynq) Documentation, Release 2.0

mmio (pynq.overlay.DefaultIP attribute), 198
mode (pynq.lib.video.AxiVDMA.MM2SChannel at-

tribute), 137
mode (pynq.lib.video.AxiVDMA.S2MMChannel at-

tribute), 138
mode (pynq.lib.video.HDMIIn attribute), 140
mode (pynq.lib.video.HDMIInFrontend attribute), 140
mode (pynq.lib.video.HDMIOut attribute), 141
mode (pynq.lib.video.HDMIOutFrontend attribute), 142
Module (class in pynq.lib.pynqmicroblaze.bsp), 134

N
name2obj() (pynq.lib.pynqmicroblaze.magic.MicroblazeMagics

method), 133
newframe() (pynq.lib.video.AxiVDMA.MM2SChannel

method), 137
newframe() (pynq.lib.video.HDMIOut method), 141
num_analyzer_samples (pynq.lib.logictools.boolean_generator.BooleanGenerator

attribute), 185
num_analyzer_samples (pynq.lib.logictools.fsm_generator.FSMGenerator

attribute), 188
num_analyzer_samples (pynq.lib.logictools.pattern_generator.PatternGenerator

attribute), 192
num_channels (pynq.lib.arduino.arduino_analog.Arduino_Analog

attribute), 144
num_input_bits (pynq.lib.logictools.fsm_generator.FSMGenerator

attribute), 187
num_output_bits (pynq.lib.logictools.fsm_generator.FSMGenerator

attribute), 187
num_outputs (pynq.lib.logictools.fsm_generator.FSMGenerator

attribute), 187
num_state_bits (pynq.lib.logictools.fsm_generator.FSMGenerator

attribute), 187
num_states (pynq.lib.logictools.fsm_generator.FSMGenerator

attribute), 187

O
off() (pynq.lib.axigpio.AxiGPIO.Output method), 124
off() (pynq.lib.led.LED method), 128
off() (pynq.lib.pmod.pmod_led8.Pmod_LED8 method),

167
off() (pynq.lib.rgbled.RGBLED method), 135
on() (pynq.lib.axigpio.AxiGPIO.Output method), 124
on() (pynq.lib.led.LED method), 128
on() (pynq.lib.pmod.pmod_led8.Pmod_LED8 method),

167
on() (pynq.lib.rgbled.RGBLED method), 135
out_color (pynq.lib.video.PixelFormat attribute), 142
output_pins (pynq.lib.logictools.boolean_generator.BooleanGenerator

attribute), 185
output_pins (pynq.lib.logictools.fsm_generator.FSMGenerator

attribute), 188
Overlay (class in pynq.overlay), 198

P
pack_args() (pynq.lib.pynqmicroblaze.rpc.FuncAdapter

method), 131
param_decode() (pynq.lib.pynqmicroblaze.rpc.ConstPointerWrapper

method), 131
param_decode() (pynq.lib.pynqmicroblaze.rpc.PointerWrapper

method), 132
param_decode() (pynq.lib.pynqmicroblaze.rpc.PrimitiveWrapper

method), 132
param_decode() (pynq.lib.pynqmicroblaze.rpc.VoidPointerWrapper

method), 133
param_decode() (pynq.lib.pynqmicroblaze.rpc.VoidWrapper

method), 133
param_encode() (pynq.lib.pynqmicroblaze.rpc.ConstPointerWrapper

method), 131
param_encode() (pynq.lib.pynqmicroblaze.rpc.PointerWrapper

method), 132
param_encode() (pynq.lib.pynqmicroblaze.rpc.PrimitiveWrapper

method), 132
param_encode() (pynq.lib.pynqmicroblaze.rpc.VoidPointerWrapper

method), 133
param_encode() (pynq.lib.pynqmicroblaze.rpc.VoidWrapper

method), 133
parked (pynq.lib.video.AxiVDMA.MM2SChannel

attribute), 138
parked (pynq.lib.video.AxiVDMA.S2MMChannel

attribute), 138
ParsedEnum (class in pynq.lib.pynqmicroblaze.rpc), 132
path (pynq.gpio.GPIO attribute), 117
PatternGenerator (class in

pynq.lib.logictools.pattern_generator), 191
phyAddress (pynq.lib.dma.LegacyDMA attribute), 126
physical_address (pynq.xlnk.ContiguousArray attribute),

206
pixel_pack (pynq.lib.video.HDMIIn attribute), 140
pixel_unpack (pynq.lib.video.HDMIOut attribute), 141
PixelFormat (class in pynq.lib.video), 142
PixelPacker (class in pynq.lib.video), 142
PL (class in pynq.pl), 203
play() (pynq.lib.arduino.arduino_grove_haptic_motor.Grove_HapticMotor

method), 149
play() (pynq.lib.audio.AudioADAU1761 method), 120
play() (pynq.lib.audio.AudioDirect method), 122
play() (pynq.lib.pmod.pmod_grove_haptic_motor.Grove_HapticMotor

method), 177
play_melody() (pynq.lib.arduino.arduino_grove_buzzer.Grove_Buzzer

method), 147
play_melody() (pynq.lib.pmod.pmod_grove_buzzer.Grove_Buzzer

method), 175
play_sequence() (pynq.lib.arduino.arduino_grove_haptic_motor.Grove_HapticMotor

method), 149
play_sequence() (pynq.lib.pmod.pmod_grove_haptic_motor.Grove_HapticMotor

method), 177

240 Index

Python productivity for Zynq (Pynq) Documentation, Release 2.0

play_tone() (pynq.lib.arduino.arduino_grove_buzzer.Grove_Buzzer
method), 147

play_tone() (pynq.lib.pmod.pmod_grove_buzzer.Grove_Buzzer
method), 175

PLMeta (class in pynq.pl), 204
Pmod_ADC (class in pynq.lib.pmod.pmod_adc), 160
Pmod_ALS (class in pynq.lib.pmod.pmod_als), 162
Pmod_Cable (class in pynq.lib.pmod.pmod_cable), 163
Pmod_DAC (class in pynq.lib.pmod.pmod_dac), 164
Pmod_DPOT (class in pynq.lib.pmod.pmod_dpot), 165
Pmod_IIC (class in pynq.lib.pmod.pmod_iic), 165
Pmod_IO (class in pynq.lib.pmod.pmod_io), 166
Pmod_LED8 (class in pynq.lib.pmod.pmod_led8), 167
Pmod_OLED (class in pynq.lib.pmod.pmod_oled), 168
Pmod_PWM (class in pynq.lib.pmod.pmod_pwm), 169
Pmod_TC1 (class in pynq.lib.pmod.pmod_tc1), 169
Pmod_Timer (class in pynq.lib.pmod.pmod_timer), 171
Pmod_TMP2 (class in pynq.lib.pmod.pmod_tmp2), 172
pointer (pynq.xlnk.ContiguousArray attribute), 206
PointerWrapper (class in pynq.lib.pynqmicroblaze.rpc),

132
post_argument() (pynq.lib.pynqmicroblaze.rpc.ConstPointerWrapper

method), 131
post_argument() (pynq.lib.pynqmicroblaze.rpc.PointerWrapper

method), 132
post_argument() (pynq.lib.pynqmicroblaze.rpc.PrimitiveWrapper

method), 132
post_argument() (pynq.lib.pynqmicroblaze.rpc.VoidPointerWrapper

method), 133
post_argument() (pynq.lib.pynqmicroblaze.rpc.VoidWrapper

method), 133
pre_argument() (pynq.lib.pynqmicroblaze.rpc.ConstPointerWrapper

method), 131
pre_argument() (pynq.lib.pynqmicroblaze.rpc.PointerWrapper

method), 132
pre_argument() (pynq.lib.pynqmicroblaze.rpc.PrimitiveWrapper

method), 132
pre_argument() (pynq.lib.pynqmicroblaze.rpc.VoidPointerWrapper

method), 133
pre_argument() (pynq.lib.pynqmicroblaze.rpc.VoidWrapper

method), 133
preprocess() (in module

pynq.lib.pynqmicroblaze.compile), 131
PrimitiveWrapper (class in pynq.lib.pynqmicroblaze.rpc),

132
print_string() (pynq.lib.arduino.arduino_lcd18.Arduino_LCD18

method), 159
program() (pynq.lib.pynqmicroblaze.pynqmicroblaze.PynqMicroblaze

method), 130
pynq.gpio (module), 117
pynq.interrupt (module), 116
pynq.lib.arduino.arduino_analog (module), 143
pynq.lib.arduino.arduino_grove_adc (module), 145
pynq.lib.arduino.arduino_grove_buzzer (module), 147

pynq.lib.arduino.arduino_grove_ear_hr (module), 147
pynq.lib.arduino.arduino_grove_finger_hr (module), 148
pynq.lib.arduino.arduino_grove_haptic_motor (module),

148
pynq.lib.arduino.arduino_grove_imu (module), 149
pynq.lib.arduino.arduino_grove_ledbar (module), 151
pynq.lib.arduino.arduino_grove_light (module), 152
pynq.lib.arduino.arduino_grove_oled (module), 153
pynq.lib.arduino.arduino_grove_pir (module), 154
pynq.lib.arduino.arduino_grove_th02 (module), 154
pynq.lib.arduino.arduino_grove_tmp (module), 155
pynq.lib.arduino.arduino_io (module), 156
pynq.lib.arduino.arduino_lcd18 (module), 157
pynq.lib.audio (module), 118
pynq.lib.axigpio (module), 122
pynq.lib.button (module), 124
pynq.lib.dma (module), 125
pynq.lib.led (module), 128
pynq.lib.logictools.boolean_generator (module), 185
pynq.lib.logictools.fsm_generator (module), 186
pynq.lib.logictools.pattern_generator (module), 191
pynq.lib.logictools.trace_analyzer (module), 194
pynq.lib.pmod.pmod_adc (module), 160
pynq.lib.pmod.pmod_als (module), 162
pynq.lib.pmod.pmod_cable (module), 163
pynq.lib.pmod.pmod_dac (module), 164
pynq.lib.pmod.pmod_dpot (module), 165
pynq.lib.pmod.pmod_grove_adc (module), 173
pynq.lib.pmod.pmod_grove_buzzer (module), 175
pynq.lib.pmod.pmod_grove_dlight (module), 175
pynq.lib.pmod.pmod_grove_ear_hr (module), 176
pynq.lib.pmod.pmod_grove_finger_hr (module), 176
pynq.lib.pmod.pmod_grove_haptic_motor (module), 177
pynq.lib.pmod.pmod_grove_imu (module), 178
pynq.lib.pmod.pmod_grove_ledbar (module), 179
pynq.lib.pmod.pmod_grove_light (module), 180
pynq.lib.pmod.pmod_grove_oled (module), 181
pynq.lib.pmod.pmod_grove_pir (module), 182
pynq.lib.pmod.pmod_grove_th02 (module), 183
pynq.lib.pmod.pmod_grove_tmp (module), 184
pynq.lib.pmod.pmod_iic (module), 165
pynq.lib.pmod.pmod_io (module), 166
pynq.lib.pmod.pmod_led8 (module), 167
pynq.lib.pmod.pmod_oled (module), 168
pynq.lib.pmod.pmod_pwm (module), 169
pynq.lib.pmod.pmod_tc1 (module), 169
pynq.lib.pmod.pmod_timer (module), 171
pynq.lib.pmod.pmod_tmp2 (module), 172
pynq.lib.pynqmicroblaze.bsp (module), 134
pynq.lib.pynqmicroblaze.compile (module), 131
pynq.lib.pynqmicroblaze.magic (module), 133
pynq.lib.pynqmicroblaze.pynqmicroblaze (module), 129
pynq.lib.pynqmicroblaze.rpc (module), 131
pynq.lib.pynqmicroblaze.streams (module), 133

Index 241

Python productivity for Zynq (Pynq) Documentation, Release 2.0

pynq.lib.rgbled (module), 134
pynq.lib.switch (module), 135
pynq.lib.usb_wifi (module), 136
pynq.lib.video (module), 137
pynq.mmio (module), 197
pynq.overlay (module), 197
pynq.pl (module), 202
pynq.ps (module), 200
pynq.xlnk (module), 206
PynqMicroblaze (class in

pynq.lib.pynqmicroblaze.pynqmicroblaze),
129

R
read() (pynq.gpio.GPIO method), 118
read() (pynq.lib.arduino.arduino_analog.Arduino_Analog

method), 144
read() (pynq.lib.arduino.arduino_grove_adc.Grove_ADC

method), 145
read() (pynq.lib.arduino.arduino_grove_ear_hr.Grove_EarHR

method), 147
read() (pynq.lib.arduino.arduino_grove_finger_hr.Grove_FingerHR

method), 148
read() (pynq.lib.arduino.arduino_grove_ledbar.Grove_LEDbar

method), 151
read() (pynq.lib.arduino.arduino_grove_light.Grove_Light

method), 152
read() (pynq.lib.arduino.arduino_grove_pir.Grove_PIR

method), 154
read() (pynq.lib.arduino.arduino_grove_th02.Grove_TH02

method), 155
read() (pynq.lib.arduino.arduino_grove_tmp.Grove_TMP

method), 156
read() (pynq.lib.arduino.arduino_io.Arduino_IO method),

156
read() (pynq.lib.axigpio.AxiGPIO.Channel method), 123
read() (pynq.lib.axigpio.AxiGPIO.InOut method), 123
read() (pynq.lib.axigpio.AxiGPIO.Input method), 123
read() (pynq.lib.axigpio.AxiGPIO.Output method), 124
read() (pynq.lib.button.Button method), 125
read() (pynq.lib.led.LED method), 128
read() (pynq.lib.pmod.pmod_adc.Pmod_ADC method),

160
read() (pynq.lib.pmod.pmod_als.Pmod_ALS method),

163
read() (pynq.lib.pmod.pmod_cable.Pmod_Cable

method), 164
read() (pynq.lib.pmod.pmod_grove_adc.Grove_ADC

method), 173
read() (pynq.lib.pmod.pmod_grove_ear_hr.Grove_EarHR

method), 176
read() (pynq.lib.pmod.pmod_grove_finger_hr.Grove_FingerHR

method), 176

read() (pynq.lib.pmod.pmod_grove_ledbar.Grove_LEDbar
method), 179

read() (pynq.lib.pmod.pmod_grove_light.Grove_Light
method), 181

read() (pynq.lib.pmod.pmod_grove_pir.Grove_PIR
method), 183

read() (pynq.lib.pmod.pmod_grove_th02.Grove_TH02
method), 183

read() (pynq.lib.pmod.pmod_grove_tmp.Grove_TMP
method), 184

read() (pynq.lib.pmod.pmod_io.Pmod_IO method), 166
read() (pynq.lib.pmod.pmod_led8.Pmod_LED8 method),

167
read() (pynq.lib.pmod.pmod_tmp2.Pmod_TMP2

method), 172
read() (pynq.lib.pynqmicroblaze.pynqmicroblaze.PynqMicroblaze

method), 130
read() (pynq.lib.pynqmicroblaze.streams.SimpleMBChannel

method), 133
read() (pynq.lib.pynqmicroblaze.streams.SimpleMBStream

method), 134
read() (pynq.lib.rgbled.RGBLED method), 135
read() (pynq.lib.switch.Switch method), 135
read() (pynq.mmio.MMIO method), 197
read() (pynq.overlay.DefaultIP method), 198
read_alarm_flags() (pynq.lib.pmod.pmod_tc1.Pmod_TC1

method), 170
read_async() (pynq.lib.pynqmicroblaze.streams.InterruptMBStream

method), 133
read_byte() (pynq.lib.pynqmicroblaze.streams.SimpleMBStream

method), 134
read_float() (pynq.lib.pynqmicroblaze.streams.SimpleMBStream

method), 134
read_int16() (pynq.lib.pynqmicroblaze.streams.SimpleMBStream

method), 134
read_int32() (pynq.lib.pynqmicroblaze.streams.SimpleMBStream

method), 134
read_joystick() (pynq.lib.arduino.arduino_lcd18.Arduino_LCD18

method), 160
read_junction_temperature()

(pynq.lib.pmod.pmod_tc1.Pmod_TC1
method), 170

read_lux() (pynq.lib.pmod.pmod_grove_dlight.Grove_Dlight
method), 175

read_raw() (pynq.lib.arduino.arduino_analog.Arduino_Analog
method), 144

read_raw() (pynq.lib.arduino.arduino_grove_adc.Grove_ADC
method), 145

read_raw() (pynq.lib.arduino.arduino_grove_ear_hr.Grove_EarHR
method), 147

read_raw() (pynq.lib.pmod.pmod_adc.Pmod_ADC
method), 161

read_raw() (pynq.lib.pmod.pmod_grove_adc.Grove_ADC
method), 173

242 Index

Python productivity for Zynq (Pynq) Documentation, Release 2.0

read_raw() (pynq.lib.pmod.pmod_grove_ear_hr.Grove_EarHR
method), 176

read_raw() (pynq.lib.pmod.pmod_tc1.Pmod_TC1
method), 170

read_raw_light() (pynq.lib.pmod.pmod_grove_dlight.Grove_Dlight
method), 175

read_string() (pynq.lib.pynqmicroblaze.streams.SimpleMBStream
method), 134

read_thermocouple_temperature()
(pynq.lib.pmod.pmod_tc1.Pmod_TC1
method), 170

read_uint16() (pynq.lib.pynqmicroblaze.streams.SimpleMBStream
method), 134

read_uint32() (pynq.lib.pynqmicroblaze.streams.SimpleMBStream
method), 134

read_upto() (pynq.lib.pynqmicroblaze.streams.SimpleMBChannel
method), 133

readchannel (pynq.lib.video.AxiVDMA attribute), 137
readframe() (pynq.lib.video.AxiVDMA.S2MMChannel

method), 138
readframe() (pynq.lib.video.HDMIIn method), 140
readframe_async() (pynq.lib.video.AxiVDMA.S2MMChannel

method), 139
readframe_async() (pynq.lib.video.HDMIIn method), 140
receive() (pynq.lib.pmod.pmod_iic.Pmod_IIC method),

166
receive_response() (pynq.lib.pynqmicroblaze.rpc.FuncAdapter

method), 131
record() (pynq.lib.audio.AudioADAU1761 method), 120
record() (pynq.lib.audio.AudioDirect method), 122
recvchannel (pynq.lib.dma.DMA attribute), 125
reg_to_alarms() (in module pynq.lib.pmod.pmod_tc1),

171
reg_to_ref() (in module pynq.lib.pmod.pmod_tc1), 171
reg_to_tc() (in module pynq.lib.pmod.pmod_tc1), 171
Register (class in pynq.ps), 202
registered (pynq.lib.pynqmicroblaze.magic.MicroblazeMagics

attribute), 133
RegisterHierarchy (class in pynq.overlay), 200
RegisterIP (class in pynq.overlay), 200
release() (pynq.lib.pynqmicroblaze.rpc.MicroblazeRPC

method), 132
reload() (pynq.lib.video.AxiVDMA.MM2SChannel

method), 138
reload() (pynq.lib.video.AxiVDMA.S2MMChannel

method), 139
replace_wildcard() (in module

pynq.lib.logictools.fsm_generator), 191
resample (pynq.lib.video.PixelPacker attribute), 143
reset() (pynq.lib.arduino.arduino_analog.Arduino_Analog

method), 144
reset() (pynq.lib.arduino.arduino_grove_adc.Grove_ADC

method), 146
reset() (pynq.lib.arduino.arduino_grove_imu.Grove_IMU

method), 150
reset() (pynq.lib.arduino.arduino_grove_ledbar.Grove_LEDbar

method), 151
reset() (pynq.lib.logictools.boolean_generator.BooleanGenerator

method), 185
reset() (pynq.lib.logictools.fsm_generator.FSMGenerator

method), 188
reset() (pynq.lib.logictools.pattern_generator.PatternGenerator

method), 193
reset() (pynq.lib.logictools.trace_analyzer.TraceAnalyzer

method), 195
reset() (pynq.lib.pmod.pmod_adc.Pmod_ADC method),

161
reset() (pynq.lib.pmod.pmod_grove_adc.Grove_ADC

method), 174
reset() (pynq.lib.pmod.pmod_grove_imu.Grove_IMU

method), 179
reset() (pynq.lib.pmod.pmod_grove_ledbar.Grove_LEDbar

method), 179
reset() (pynq.lib.pynqmicroblaze.pynqmicroblaze.PynqMicroblaze

method), 130
reset() (pynq.lib.pynqmicroblaze.rpc.MicroblazeRPC

method), 132
reset() (pynq.lib.usb_wifi.Usb_Wifi method), 137
reset() (pynq.lib.video.AxiVDMA.MM2SChannel

method), 138
reset() (pynq.lib.video.AxiVDMA.S2MMChannel

method), 139
reset() (pynq.overlay.Overlay method), 200
reset() (pynq.pl.PLMeta method), 205
reset_pin (pynq.lib.pynqmicroblaze.pynqmicroblaze.PynqMicroblaze

attribute), 130
return_decode() (pynq.lib.pynqmicroblaze.rpc.ConstPointerWrapper

method), 131
return_decode() (pynq.lib.pynqmicroblaze.rpc.PointerWrapper

method), 132
return_decode() (pynq.lib.pynqmicroblaze.rpc.PrimitiveWrapper

method), 133
return_decode() (pynq.lib.pynqmicroblaze.rpc.VoidPointerWrapper

method), 133
return_decode() (pynq.lib.pynqmicroblaze.rpc.VoidWrapper

method), 133
return_interface (pynq.lib.pynqmicroblaze.rpc.FuncAdapter

attribute), 131
rfd_addr (pynq.lib.pmod.pmod_iic.Pmod_IIC attribute),

166
RGBLED (class in pynq.lib.rgbled), 134
rst_name (pynq.lib.pynqmicroblaze.pynqmicroblaze.PynqMicroblaze

attribute), 130
run() (pynq.lib.logictools.boolean_generator.BooleanGenerator

method), 186
run() (pynq.lib.logictools.fsm_generator.FSMGenerator

method), 188
run() (pynq.lib.logictools.pattern_generator.PatternGenerator

Index 243

Python productivity for Zynq (Pynq) Documentation, Release 2.0

method), 193
run() (pynq.lib.logictools.trace_analyzer.TraceAnalyzer

method), 195
run() (pynq.lib.pynqmicroblaze.pynqmicroblaze.PynqMicroblaze

method), 130
running (pynq.lib.video.AxiVDMA.MM2SChannel at-

tribute), 138
running (pynq.lib.video.AxiVDMA.S2MMChannel at-

tribute), 139

S
sample_len (pynq.lib.audio.AudioADAU1761 attribute),

119
sample_len (pynq.lib.audio.AudioDirect attribute), 121
sample_rate (pynq.lib.audio.AudioADAU1761 attribute),

119
sample_rate (pynq.lib.audio.AudioDirect attribute), 121
save() (pynq.lib.audio.AudioADAU1761 method), 120
save() (pynq.lib.audio.AudioDirect method), 122
scl_pin (pynq.lib.pmod.pmod_iic.Pmod_IIC attribute),

165
sda_pin (pynq.lib.pmod.pmod_iic.Pmod_IIC attribute),

165
select_line_in() (pynq.lib.audio.AudioADAU1761

method), 120
select_microphone() (pynq.lib.audio.AudioADAU1761

method), 120
send() (pynq.lib.pmod.pmod_iic.Pmod_IIC method), 166
sendchannel (pynq.lib.dma.DMA attribute), 125
server_update() (pynq.pl.PLMeta method), 205
set_cable() (pynq.lib.pmod.pmod_cable.Pmod_Cable

method), 164
set_contrast() (pynq.lib.arduino.arduino_grove_oled.Grove_OLED

method), 153
set_contrast() (pynq.lib.pmod.pmod_grove_oled.Grove_OLED

method), 181
set_fclk() (pynq.ps.ClocksMeta method), 202
set_horizontal_mode() (pynq.lib.arduino.arduino_grove_oled.Grove_OLED

method), 153
set_horizontal_mode() (pynq.lib.pmod.pmod_grove_oled.Grove_OLED

method), 182
set_inverse_mode() (pynq.lib.arduino.arduino_grove_oled.Grove_OLED

method), 153
set_inverse_mode() (pynq.lib.pmod.pmod_grove_oled.Grove_OLED

method), 182
set_log_interval_ms() (pynq.lib.arduino.arduino_analog.Arduino_Analog

method), 144
set_log_interval_ms() (pynq.lib.arduino.arduino_grove_adc.Grove_ADC

method), 146
set_log_interval_ms() (pynq.lib.pmod.pmod_als.Pmod_ALS

method), 163
set_log_interval_ms() (pynq.lib.pmod.pmod_grove_adc.Grove_ADC

method), 174

set_log_interval_ms() (pynq.lib.pmod.pmod_tc1.Pmod_TC1
method), 170

set_log_interval_ms() (pynq.lib.pmod.pmod_tmp2.Pmod_TMP2
method), 172

set_normal_mode() (pynq.lib.arduino.arduino_grove_oled.Grove_OLED
method), 153

set_normal_mode() (pynq.lib.pmod.pmod_grove_oled.Grove_OLED
method), 182

set_page_mode() (pynq.lib.arduino.arduino_grove_oled.Grove_OLED
method), 153

set_page_mode() (pynq.lib.pmod.pmod_grove_oled.Grove_OLED
method), 182

set_position() (pynq.lib.arduino.arduino_grove_oled.Grove_OLED
method), 154

set_position() (pynq.lib.pmod.pmod_grove_oled.Grove_OLED
method), 182

set_protocol() (pynq.lib.logictools.trace_analyzer.TraceAnalyzer
method), 195

setdirection() (pynq.lib.axigpio.AxiGPIO method), 124
setdirection() (pynq.lib.axigpio.AxiGPIO.Channel

method), 123
setframe() (pynq.lib.video.AxiVDMA.MM2SChannel

method), 138
setlength() (pynq.lib.axigpio.AxiGPIO method), 124
setlength() (pynq.lib.axigpio.AxiGPIO.Channel method),

123
setup() (pynq.lib.logictools.boolean_generator.BooleanGenerator

method), 186
setup() (pynq.lib.logictools.fsm_generator.FSMGenerator

method), 188
setup() (pynq.lib.logictools.pattern_generator.PatternGenerator

method), 193
setup() (pynq.lib.logictools.trace_analyzer.TraceAnalyzer

method), 196
setup() (pynq.pl.PLMeta method), 205
shape (pynq.lib.video.VideoMode attribute), 143
show_protocol() (pynq.lib.logictools.trace_analyzer.TraceAnalyzer

method), 196
show_state_diagram() (pynq.lib.logictools.fsm_generator.FSMGenerator

method), 188
show_waveform() (pynq.lib.logictools.boolean_generator.BooleanGenerator

method), 186
show_waveform() (pynq.lib.logictools.fsm_generator.FSMGenerator

method), 189
show_waveform() (pynq.lib.logictools.pattern_generator.PatternGenerator

method), 193
sig_handler() (in module pynq.xlnk), 209
SimpleMBChannel (class in

pynq.lib.pynqmicroblaze.streams), 133
SimpleMBStream (class in

pynq.lib.pynqmicroblaze.streams), 134
sr_addr (pynq.lib.pmod.pmod_iic.Pmod_IIC attribute),

165
src_samples (pynq.lib.logictools.pattern_generator.PatternGenerator

244 Index

Python productivity for Zynq (Pynq) Documentation, Release 2.0

attribute), 192
start (pynq.lib.video.HDMIOutFrontend attribute), 142
start() (pynq.lib.video.AxiVDMA.MM2SChannel

method), 138
start() (pynq.lib.video.AxiVDMA.S2MMChannel

method), 139
start() (pynq.lib.video.HDMIIn method), 140
start() (pynq.lib.video.HDMIInFrontend method), 140
start() (pynq.lib.video.HDMIOut method), 141
start_log() (pynq.lib.arduino.arduino_analog.Arduino_Analog

method), 144
start_log() (pynq.lib.arduino.arduino_grove_adc.Grove_ADC

method), 146
start_log() (pynq.lib.arduino.arduino_grove_finger_hr.Grove_FingerHR

method), 148
start_log() (pynq.lib.arduino.arduino_grove_light.Grove_Light

method), 152
start_log() (pynq.lib.arduino.arduino_grove_th02.Grove_TH02

method), 155
start_log() (pynq.lib.arduino.arduino_grove_tmp.Grove_TMP

method), 156
start_log() (pynq.lib.pmod.pmod_adc.Pmod_ADC

method), 161
start_log() (pynq.lib.pmod.pmod_als.Pmod_ALS

method), 163
start_log() (pynq.lib.pmod.pmod_grove_adc.Grove_ADC

method), 174
start_log() (pynq.lib.pmod.pmod_grove_finger_hr.Grove_FingerHR

method), 176
start_log() (pynq.lib.pmod.pmod_grove_light.Grove_Light

method), 181
start_log() (pynq.lib.pmod.pmod_grove_th02.Grove_TH02

method), 183
start_log() (pynq.lib.pmod.pmod_grove_tmp.Grove_TMP

method), 184
start_log() (pynq.lib.pmod.pmod_tc1.Pmod_TC1

method), 170
start_log() (pynq.lib.pmod.pmod_tmp2.Pmod_TMP2

method), 173
start_log_raw() (pynq.lib.arduino.arduino_analog.Arduino_Analog

method), 144
start_log_raw() (pynq.lib.arduino.arduino_grove_adc.Grove_ADC

method), 146
start_log_raw() (pynq.lib.pmod.pmod_adc.Pmod_ADC

method), 162
start_log_raw() (pynq.lib.pmod.pmod_grove_adc.Grove_ADC

method), 174
state (pynq.lib.pynqmicroblaze.pynqmicroblaze.PynqMicroblaze

attribute), 130
state_names (pynq.lib.logictools.fsm_generator.FSMGenerator

attribute), 187
status (pynq.lib.logictools.boolean_generator.BooleanGenerator

attribute), 186
status (pynq.lib.logictools.fsm_generator.FSMGenerator

attribute), 189
status (pynq.lib.logictools.pattern_generator.PatternGenerator

attribute), 193
status (pynq.lib.logictools.trace_analyzer.TraceAnalyzer

attribute), 196
step() (pynq.lib.logictools.boolean_generator.BooleanGenerator

method), 186
step() (pynq.lib.logictools.fsm_generator.FSMGenerator

method), 189
step() (pynq.lib.logictools.pattern_generator.PatternGenerator

method), 193
step() (pynq.lib.logictools.trace_analyzer.TraceAnalyzer

method), 196
stimulus_group (pynq.lib.logictools.pattern_generator.PatternGenerator

attribute), 191
stimulus_group_name (pynq.lib.logictools.pattern_generator.PatternGenerator

attribute), 191
stimulus_names (pynq.lib.logictools.pattern_generator.PatternGenerator

attribute), 191
stimulus_pins (pynq.lib.logictools.pattern_generator.PatternGenerator

attribute), 192
stimulus_waves (pynq.lib.logictools.pattern_generator.PatternGenerator

attribute), 192
stop (pynq.lib.video.HDMIOutFrontend attribute), 142
stop() (pynq.lib.arduino.arduino_grove_haptic_motor.Grove_HapticMotor

method), 149
stop() (pynq.lib.logictools.boolean_generator.BooleanGenerator

method), 186
stop() (pynq.lib.logictools.fsm_generator.FSMGenerator

method), 189
stop() (pynq.lib.logictools.pattern_generator.PatternGenerator

method), 194
stop() (pynq.lib.logictools.trace_analyzer.TraceAnalyzer

method), 196
stop() (pynq.lib.pmod.pmod_grove_haptic_motor.Grove_HapticMotor

method), 177
stop() (pynq.lib.pmod.pmod_pwm.Pmod_PWM method),

169
stop() (pynq.lib.pmod.pmod_timer.Pmod_Timer

method), 172
stop() (pynq.lib.video.AxiVDMA.MM2SChannel

method), 138
stop() (pynq.lib.video.AxiVDMA.S2MMChannel

method), 139
stop() (pynq.lib.video.HDMIIn method), 140
stop() (pynq.lib.video.HDMIInFrontend method), 140
stop() (pynq.lib.video.HDMIOut method), 141
stop_log() (pynq.lib.arduino.arduino_analog.Arduino_Analog

method), 145
stop_log() (pynq.lib.arduino.arduino_grove_adc.Grove_ADC

method), 146
stop_log() (pynq.lib.arduino.arduino_grove_finger_hr.Grove_FingerHR

method), 148
stop_log() (pynq.lib.arduino.arduino_grove_light.Grove_Light

Index 245

Python productivity for Zynq (Pynq) Documentation, Release 2.0

method), 152
stop_log() (pynq.lib.arduino.arduino_grove_th02.Grove_TH02

method), 155
stop_log() (pynq.lib.arduino.arduino_grove_tmp.Grove_TMP

method), 156
stop_log() (pynq.lib.pmod.pmod_adc.Pmod_ADC

method), 162
stop_log() (pynq.lib.pmod.pmod_als.Pmod_ALS

method), 163
stop_log() (pynq.lib.pmod.pmod_grove_adc.Grove_ADC

method), 174
stop_log() (pynq.lib.pmod.pmod_grove_finger_hr.Grove_FingerHR

method), 177
stop_log() (pynq.lib.pmod.pmod_grove_light.Grove_Light

method), 181
stop_log() (pynq.lib.pmod.pmod_grove_th02.Grove_TH02

method), 183
stop_log() (pynq.lib.pmod.pmod_grove_tmp.Grove_TMP

method), 184
stop_log() (pynq.lib.pmod.pmod_tc1.Pmod_TC1

method), 170
stop_log() (pynq.lib.pmod.pmod_tmp2.Pmod_TMP2

method), 173
stop_log_raw() (pynq.lib.arduino.arduino_analog.Arduino_Analog

method), 145
stop_log_raw() (pynq.lib.arduino.arduino_grove_adc.Grove_ADC

method), 146
stop_log_raw() (pynq.lib.pmod.pmod_adc.Pmod_ADC

method), 162
stop_log_raw() (pynq.lib.pmod.pmod_grove_adc.Grove_ADC

method), 174
stride (pynq.lib.video.VideoMode attribute), 143
Switch (class in pynq.lib.switch), 135

T
tie() (pynq.lib.video.AxiVDMA.S2MMChannel method),

139
tie() (pynq.lib.video.HDMIIn method), 140
timeout (class in pynq.lib.dma), 128
timestamp (pynq.pl.Bitstream attribute), 203
timestamp (pynq.pl.PL attribute), 203
timestamp (pynq.pl.PLMeta attribute), 206
toggle() (pynq.lib.axigpio.AxiGPIO.Output method), 124
toggle() (pynq.lib.led.LED method), 129
toggle() (pynq.lib.pmod.pmod_led8.Pmod_LED8

method), 167
trace() (pynq.lib.logictools.boolean_generator.BooleanGenerator

method), 186
trace() (pynq.lib.logictools.fsm_generator.FSMGenerator

method), 189
trace() (pynq.lib.logictools.pattern_generator.PatternGenerator

method), 194
TraceAnalyzer (class in

pynq.lib.logictools.trace_analyzer), 194

transfer() (pynq.lib.dma.LegacyDMA method), 127
transitions (pynq.lib.logictools.fsm_generator.FSMGenerator

attribute), 187
trimask (pynq.lib.axigpio.AxiGPIO.Channel attribute),

123

U
uio_index (pynq.lib.audio.AudioADAU1761 attribute),

119
Usb_Wifi (class in pynq.lib.usb_wifi), 136
use_state_bits (pynq.lib.logictools.fsm_generator.FSMGenerator

attribute), 188

V
VideoMode (class in pynq.lib.video), 143
virt_base (pynq.mmio.MMIO attribute), 197
virt_offset (pynq.mmio.MMIO attribute), 197
visit_Enum() (pynq.lib.pynqmicroblaze.rpc.FuncDefVisitor

method), 131
visit_FuncDecl() (pynq.lib.pynqmicroblaze.rpc.FuncDefVisitor

method), 131
visit_FuncDef() (pynq.lib.pynqmicroblaze.rpc.FuncDefVisitor

method), 131
visit_Typedef() (pynq.lib.pynqmicroblaze.rpc.FuncDefVisitor

method), 132
VoidPointerWrapper (class in

pynq.lib.pynqmicroblaze.rpc), 133
VoidWrapper (class in pynq.lib.pynqmicroblaze.rpc), 133

W
wait() (pynq.interrupt.Interrupt method), 116
wait() (pynq.lib.dma.LegacyDMA method), 128
wait() (pynq.lib.pynqmicroblaze.pynqmicroblaze.MBInterruptEvent

method), 129
wait_for_data_async() (pynq.lib.pynqmicroblaze.streams.InterruptMBStream

method), 133
wait_for_interrupt_async()

(pynq.lib.axigpio.AxiGPIO.Channel method),
123

wait_for_value() (pynq.lib.axigpio.AxiGPIO.Input
method), 124

wait_for_value() (pynq.lib.button.Button method), 125
wait_for_value() (pynq.lib.switch.Switch method), 135
wait_for_value_async() (pynq.lib.axigpio.AxiGPIO.Input

method), 124
wait_for_value_async() (pynq.lib.button.Button method),

125
wait_for_value_async() (pynq.lib.switch.Switch method),

136
waveform (pynq.lib.logictools.fsm_generator.FSMGenerator

attribute), 188
waveform (pynq.lib.logictools.pattern_generator.PatternGenerator

attribute), 192

246 Index

Python productivity for Zynq (Pynq) Documentation, Release 2.0

waveform_dict (pynq.lib.logictools.pattern_generator.PatternGenerator
attribute), 192

waveforms (pynq.lib.logictools.boolean_generator.BooleanGenerator
attribute), 185

width (pynq.lib.video.VideoMode attribute), 143
width (pynq.ps.Register attribute), 202
wifi_port (pynq.lib.usb_wifi.Usb_Wifi attribute), 136
write() (pynq.gpio.GPIO method), 118
write() (pynq.lib.arduino.arduino_grove_oled.Grove_OLED

method), 154
write() (pynq.lib.arduino.arduino_io.Arduino_IO

method), 157
write() (pynq.lib.axigpio.AxiGPIO.Channel method), 123
write() (pynq.lib.axigpio.AxiGPIO.InOut method), 123
write() (pynq.lib.axigpio.AxiGPIO.Output method), 124
write() (pynq.lib.led.LED method), 129
write() (pynq.lib.pmod.pmod_dac.Pmod_DAC method),

164
write() (pynq.lib.pmod.pmod_dpot.Pmod_DPOT

method), 165
write() (pynq.lib.pmod.pmod_grove_oled.Grove_OLED

method), 182
write() (pynq.lib.pmod.pmod_io.Pmod_IO method), 166
write() (pynq.lib.pmod.pmod_led8.Pmod_LED8

method), 168
write() (pynq.lib.pmod.pmod_oled.Pmod_OLED

method), 169
write() (pynq.lib.pynqmicroblaze.pynqmicroblaze.PynqMicroblaze

method), 130
write() (pynq.lib.pynqmicroblaze.streams.SimpleMBChannel

method), 134
write() (pynq.lib.pynqmicroblaze.streams.SimpleMBStream

method), 134
write() (pynq.lib.rgbled.RGBLED method), 135
write() (pynq.mmio.MMIO method), 197
write() (pynq.overlay.DefaultIP method), 198
write_address() (pynq.lib.pynqmicroblaze.streams.SimpleMBStream

method), 134
write_binary() (pynq.lib.arduino.arduino_grove_ledbar.Grove_LEDbar

method), 151
write_binary() (pynq.lib.pmod.pmod_grove_ledbar.Grove_LEDbar

method), 179
write_brightness() (pynq.lib.arduino.arduino_grove_ledbar.Grove_LEDbar

method), 151
write_brightness() (pynq.lib.pmod.pmod_grove_ledbar.Grove_LEDbar

method), 180
write_byte() (pynq.lib.pynqmicroblaze.streams.SimpleMBStream

method), 134
write_float() (pynq.lib.pynqmicroblaze.streams.SimpleMBStream

method), 134
write_int16() (pynq.lib.pynqmicroblaze.streams.SimpleMBStream

method), 134
write_int32() (pynq.lib.pynqmicroblaze.streams.SimpleMBStream

method), 134

write_level() (pynq.lib.arduino.arduino_grove_ledbar.Grove_LEDbar
method), 151

write_level() (pynq.lib.pmod.pmod_grove_ledbar.Grove_LEDbar
method), 180

write_string() (pynq.lib.pynqmicroblaze.streams.SimpleMBStream
method), 134

write_uint16() (pynq.lib.pynqmicroblaze.streams.SimpleMBStream
method), 134

write_uint32() (pynq.lib.pynqmicroblaze.streams.SimpleMBStream
method), 134

writechannel (pynq.lib.video.AxiVDMA attribute), 137
writeframe() (pynq.lib.video.AxiVDMA.MM2SChannel

method), 138
writeframe() (pynq.lib.video.HDMIOut method), 141
writeframe_async() (pynq.lib.video.AxiVDMA.MM2SChannel

method), 138
writeframe_async() (pynq.lib.video.HDMIOut method),

141

X
Xlnk (class in pynq.xlnk), 206
xlnk_reset() (pynq.xlnk.Xlnk method), 209

Index 247

	Project Goals
	Summary
	Getting Started
	Jupyter Notebooks
	Python Environment
	PYNQ Overlays
	PYNQ Libraries
	Overlay Design Methodology
	PYNQ SD Card
	pynq Package
	Verification
	Frequently Asked Questions (FAQs)
	Glossary
	Useful Links
	Appendix
	Change Log

	Python Module Index

