Source code for pynq.overlay

#   Copyright (c) 2016-2021, Xilinx, Inc.
#   SPDX-License-Identifier: BSD-3-Clause

import collections
import ctypes
import itertools
import re
import struct
import warnings
from copy import deepcopy

import pynqutils
from pynqmetadata.frontends import Metadata

from pynq._3rdparty import ert

from .bitstream import Bitstream
from .gpio import GPIO
from .interrupt import Interrupt
from .metadata.append_drivers_pass import bind_drivers_to_metadata
from .mmio import MMIO
from .ps import Clocks
from .registers import RegisterMap



DRIVERS_GROUP = "pynq.lib"


[docs]class UnsupportedConfiguration(Exception): """Thrown by a driver that does not support the requested configuration of an IP. If a driver's __init__ throws this exception the binding system will issue a warning and instead create a DefaultIP instance. """ pass
def _assign_drivers(description, ignore_version, device): """Assigns a driver for each IP and hierarchy in the description.""" for name, details in description["hierarchies"].items(): _assign_drivers(details, ignore_version, device) details["device"] = device details["driver"] = DocumentHierarchy for hip in _hierarchy_drivers: if hip.checkhierarchy(details): details["driver"] = hip break for name, details in description["ip"].items(): details["device"] = device ip_type = details["type"] if ip_type in _ip_drivers: details["driver"] = _ip_drivers[ip_type] else: no_version_ip = ip_type.rpartition(":")[0] if ip_type else None if no_version_ip in _ip_drivers: if ignore_version: details["driver"] = _ip_drivers[no_version_ip] else: other_versions = [ v for v in _ip_drivers.keys() if v.startswith(no_version_ip + ":") ] message = ( "IP {0} is of type {1} and driver found for [{2}]. " + "Use ignore_version=True to use this driver." ).format( details["fullpath"], details["type"], ", ".join(other_versions) ) warnings.warn(message, UserWarning) details["driver"] = DefaultIP else: details["driver"] = DefaultIP def _complete_description( ip_dict, hierarchy_dict, ignore_version, mem_dict, device, overlay ): """Returns a complete hierarchical description of an overlay based on the three dictionaries parsed from HWH file. """ starting_dict = dict() starting_dict["ip"] = {k: v for k, v in ip_dict.items()} starting_dict["hierarchies"] = {k: v for k, v in hierarchy_dict.items()} starting_dict["interrupts"] = dict() starting_dict["gpio"] = dict() starting_dict["memories"] = { re.sub("[^A-Za-z0-9_]", "", k): v for k, v in mem_dict.items() if v.get("used") } starting_dict["device"] = device for k, v in starting_dict["hierarchies"].items(): v["overlay"] = overlay _assign_drivers(starting_dict, ignore_version, device) return starting_dict _class_aliases = { "pynq.overlay.DocumentOverlay": "pynq.overlay.DefaultOverlay", "pynq.overlay.DocumentHierarchy": "pynq.overlay.DefaultHierarchy", } def _classname(class_): """Returns the full name for a class. Has option for overriding some class names to hide internal details. The overrides are stored in the `_class_aliases` dictionaries. """ rawname = "{}.{}".format(class_.__module__, class_.__name__) if rawname in _class_aliases: return _class_aliases[rawname] else: return rawname def _build_docstring(description, name, type_): """Helper function to build a documentation string for a hierarchical description. Parameters ---------- description : dict The description to document. name : str The name of the object - inserted into the doc string type_ : str The type of the object - generally 'overlay' or 'hierarchy' Returns ------- str : The generated documentation string """ lines = list() lines.append("Default documentation for {} {}. The following".format(type_, name)) lines.append("attributes are available on this {}:".format(type_)) lines.append("") lines.append("IP Blocks") lines.append("----------") if description["ip"]: for ip, details in description["ip"].items(): lines.append("{0: <20} : {1}".format(ip, _classname(details["driver"]))) else: lines.append("None") lines.append("") lines.append("Hierarchies") lines.append("-----------") if description["hierarchies"]: for hierarchy, details in description["hierarchies"].items(): lines.append( "{0: <20} : {1}".format(hierarchy, _classname(details["driver"])) ) else: lines.append("None") lines.append("") lines.append("Interrupts") lines.append("----------") if description["interrupts"]: for interrupt in description["interrupts"].keys(): lines.append("{0: <20} : pynq.interrupt.Interrupt".format(interrupt)) else: lines.append("None") lines.append("") lines.append("GPIO Outputs") lines.append("------------") if description["gpio"]: for gpio in description["gpio"].keys(): lines.append("{0: <20} : pynq.gpio.GPIO".format(gpio)) else: lines.append("None") lines.append("") lines.append("Memories") lines.append("------------") if description["memories"]: for mem, mem_desc in description["memories"].items(): if "streaming" in mem_desc and mem_desc["streaming"]: lines.append("{0: <20} : Stream".format(mem)) else: lines.append("{0: <20} : Memory".format(mem)) else: lines.append("None") lines.append("") lines.append("") return "\n ".join(lines)
[docs]class Overlay(Bitstream): """This class keeps track of a single bitstream's state and contents. The overlay class holds the state of the bitstream and enables run-time protection of bindings. Our definition of overlay is: "post-bitstream configurable design". Hence, this class must expose configurability through content discovery and runtime protection. The overlay class exposes the IP and hierarchies as attributes in the overlay. If no other drivers are available the `DefaultIP` is constructed for IP cores at top level and `DefaultHierarchy` for any hierarchies that contain addressable IP. Custom drivers can be bound to IP and hierarchies by subclassing `DefaultIP` and `DefaultHierarchy`. See the help entries for those class for more details. This class stores four dictionaries: IP, GPIO, interrupt controller and interrupt pin dictionaries. Each entry of the IP dictionary is a mapping: 'name' -> {phys_addr, addr_range, type, config, state}, where name (str) is the key of the entry. phys_addr (int) is the physical address of the IP. addr_range (int) is the address range of the IP. type (str) is the type of the IP. config (dict) is a dictionary of the configuration parameters. state (str) is the state information about the IP. Each entry of the GPIO dictionary is a mapping: 'name' -> {pin, state}, where name (str) is the key of the entry. pin (int) is the user index of the GPIO, starting from 0. state (str) is the state information about the GPIO. Each entry in the interrupt controller dictionary is a mapping: 'name' -> {parent, index}, where name (str) is the name of the interrupt controller. parent (str) is the name of the parent controller or '' if attached directly to the PS. index (int) is the index of the interrupt attached to. Each entry in the interrupt pin dictionary is a mapping: 'name' -> {controller, index}, where name (str) is the name of the pin. controller (str) is the name of the interrupt controller. index (int) is the line index. Attributes ---------- bitfile_name : str The absolute path of the bitstream. dtbo : str The absolute path of the dtbo file for the full bitstream. ip_dict : dict All the addressable IPs from PS. Key is the name of the IP; value is a dictionary mapping the physical address, address range, IP type, parameters, registers, and the state associated with that IP: {str: {'phys_addr' : int, 'addr_range' : int, \ 'type' : str, 'parameters' : dict, 'registers': dict, \ 'state' : str}}. gpio_dict : dict All the GPIO pins controlled by PS. Key is the name of the GPIO pin; value is a dictionary mapping user index (starting from 0), and the state associated with that GPIO pin: {str: {'index' : int, 'state' : str}}. interrupt_controllers : dict All AXI interrupt controllers in the system attached to a PS interrupt line. Key is the name of the controller; value is a dictionary mapping parent interrupt controller and the line index of this interrupt: {str: {'parent': str, 'index' : int}}. The PS is the root of the hierarchy and is unnamed. interrupt_pins : dict All pins in the design attached to an interrupt controller. Key is the name of the pin; value is a dictionary mapping the interrupt controller and the line index used: {str: {'controller' : str, 'index' : int}}. pr_dict : dict Dictionary mapping from the name of the partial-reconfigurable hierarchical blocks to the loaded partial bitstreams: {str: {'loaded': str, 'dtbo': str}}. device : pynq.Device The device that the overlay is loaded on """ def __init__( self, bitfile_name, dtbo=None, download=True, ignore_version=False, device=None, gen_cache=False ): """Return a new Overlay object. An overlay instantiates a bitstream object as a member initially. Parameters ---------- bitfile_name : str The bitstream name or absolute path as a string. dtbo : str The dtbo file name or absolute path as a string. download : bool Whether the overlay should be downloaded. ignore_version : bool Indicate whether or not to ignore the driver versions. device : pynq.Device Device on which to load the Overlay. Defaults to pynq.Device.active_device gen_cache: bool if true generates a pickeled cache of the metadata Note ---- This class requires a HWH file to be next to bitstream file with same name (e.g. `base.bit` and `base.hwh`). """ super().__init__(bitfile_name, dtbo, partial=False, device=device) self._register_drivers() self.device.set_bitfile_name(self.bitfile_name) self.parser = self.device.parser self.ip_dict = ( self.gpio_dict ) = ( self.interrupt_controllers ) = self.interrupt_pins = self.hierarchy_dict = dict() self._deepcopy_dict_from(self.parser) self.clock_dict = self.parser.clock_dict self.pr_dict = dict() self.ignore_version = ignore_version description = _complete_description( self.ip_dict, self.hierarchy_dict, self.ignore_version, self.mem_dict, self.device, self, ) self._ip_map = _IPMap(description) # If we have a system graph information, expose it if hasattr(self.parser, "systemgraph"): self.systemgraph = self.parser.systemgraph else: self.systemgraph = None if download: self.download() else: if gen_cache: self.gen_cache() self.__doc__ = _build_docstring( self._ip_map._description, bitfile_name, "overlay" ) def __getattr__(self, key): """Overload of __getattr__ to return a driver for an IP or hierarchy. Throws an `RuntimeError` if the overlay is not loaded. """ if self.is_loaded(): return getattr(self._ip_map, key) else: raise RuntimeError("Overlay not currently loaded") def _deepcopy_dict_from(self, source): self.ip_dict = pynqutils.runtime.ReprDict( deepcopy(source.ip_dict), rootname="ip_dict" ) self.gpio_dict = pynqutils.runtime.ReprDict( deepcopy(source.gpio_dict), rootname="gpio_dict" ) self.interrupt_controllers = pynqutils.runtime.ReprDict( deepcopy(source.interrupt_controllers), rootname="interrupt_controllers" ) self.interrupt_pins = pynqutils.runtime.ReprDict( deepcopy(source.interrupt_pins), rootname="interrupt_pins" ) self.hierarchy_dict = pynqutils.runtime.ReprDict( deepcopy(source.hierarchy_dict), rootname="hierarchy_dict" ) self.mem_dict = pynqutils.runtime.ReprDict( deepcopy(source.mem_dict), rootname="mem_dict" )
[docs] def free(self): if hasattr(self.device, "free_bitstream"): self.device.free_bitstream() if self.dtbo: self.remove_dtbo() self.device.close()
[docs] def gen_cache(self): """ Generate a pickled cache of the metadata even if a download has not occurred """ super().gen_cache(self.parser)
[docs] def download(self, dtbo=None): """The method to download a full bitstream onto PL. After the bitstream has been downloaded, the "timestamp" in PL will be updated. In addition, all the dictionaries on PL will be reset automatically. This method will use parameter `dtbo` or `self.dtbo` to configure the device tree. The download method will also configure some of the PS registers based on the metadata file provided, e.g. PL clocks, AXI master port width. Parameters ---------- dtbo : str The path of the dtbo file. """ for i in self.clock_dict: if "enable" in self.clock_dict[i]: enable = self.clock_dict[i]["enable"] div0 = self.clock_dict[i]["divisor0"] div1 = self.clock_dict[i]["divisor1"] if enable: Clocks.set_pl_clk(i, div0, div1) else: Clocks.set_pl_clk(i) super().download(self.parser) if dtbo: super().insert_dtbo(dtbo) elif self.dtbo: super().insert_dtbo()
[docs] def pr_download(self, partial_region, partial_bit, dtbo=None, program=True): """The method to download a partial bitstream onto PL. In this method, the corresponding parser will only be added once the `download()` method of the hierarchical block is called. This method always uses the parameter `dtbo` to configure the device tree. Note ---- There is no check on whether the partial region specified by users is really partial-reconfigurable. So users have to make sure the `partial_region` provided is correct. Parameters ---------- partial_region : str The name of the hierarchical block corresponding to the PR region. partial_bit : str The name of the partial bitstream. dtbo : str The path of the dtbo file. program : bool Whether the overlay should be downloaded. """ pr_block = self.__getattr__(partial_region) pr_block.download(bitfile_name=partial_bit, dtbo=dtbo, program=program)
[docs] def is_loaded(self): """This method checks whether a bitstream is loaded. This method returns true if the loaded PL bitstream is same as this Overlay's member bitstream. Returns ------- bool True if bitstream is loaded. """ if not self.timestamp == "": return self.timestamp == self.device.timestamp else: return self.bitfile_name == self.device.bitfile_name
[docs] def reset(self): """This function resets all the dictionaries kept in the overlay. This function should be used with caution. In most cases, only those dictionaries keeping track of states need to be updated. Returns ------- None """ self.ip_dict = self.parser.ip_dict self.gpio_dict = self.parser.gpio_dict self.interrupt_controllers = self.parser.interrupt_controllers self.interrupt_pins = self.parser.interrupt_pins if self.is_loaded(): self.device.reset(self.parser, self.timestamp, self.bitfile_name)
[docs] def load_ip_data(self, ip_name, data): """This method loads the data to the addressable IP. Calls the method in the super class to load the data. This method can be used to program the IP. For example, users can use this method to load the program to the Microblaze processors on PL. Note ---- The data is assumed to be in binary format (.bin). The data name will be stored as a state information in the IP dictionary. Parameters ---------- ip_name : str The name of the addressable IP. data : str The absolute path of the data to be loaded. Returns ------- None """ self.device.load_ip_data(ip_name, data) self.ip_dict[ip_name]["state"] = data
def __dir__(self): return sorted( set(super().__dir__() + list(self.__dict__.keys()) + self._ip_map._keys()) ) def _register_drivers(self): """Imports plugin modules registered against `pynq.lib`, so that IP drivers contained in these modules can be registered automatically. """ import importlib drivers_ext_man = pynqutils.setup_utils.ExtensionsManager(DRIVERS_GROUP) importlib.import_module(DRIVERS_GROUP) for ext in drivers_ext_man.list: importlib.import_module(ext.module_name)
_ip_drivers = dict() _hierarchy_drivers = collections.deque()
[docs]class RegisterIP(type): """Meta class that binds all registers all subclasses as IP drivers The `bindto` attribute of subclasses should be an array of strings containing the VLNV of the IP the driver should bind to. """ def __init__(cls, name, bases, attrs): if "bindto" in attrs: for vlnv in cls.bindto: _ip_drivers[vlnv] = cls _ip_drivers[vlnv.rpartition(":")[0]] = cls super().__init__(name, bases, attrs)
[docs] def unregister(cls): """Unregister a subclass from the driver registry""" if hasattr(cls, "bindto"): for vlnv in cls.bindto: vln = vlnv.rpartition(":")[0] if _ip_drivers.get(vlnv, None) == cls: del _ip_drivers[vlnv] if _ip_drivers.get(vln, None) == cls: del _ip_drivers[vln]
_struct_dict = { # Base Vitis int types "char": "c", "signed char": "b", "unsigned char": "B", "short": "h", "short int": "h", "signed short": "h", "signed short int": "h", "unsigned short": "H", "unsigned short int": "H", "int": "i", "signed": "i", "signed int": "i", "unsigned": "I", "unsigned int": "I", "long": "l", "long int": "l", "signed long": "l", "signed long int": "l", "unsigned long": "L", "unsigned long int": "L", "long long": "q", "long long int": "q", "signed long long": "q", "signed long long int": "q", "unsigned long long": "Q", "unsigned long long int": "Q", # Base Vitis floating point types "float": "f", "double": "d", # Other types seen in the wild "long": "l", "uint": "I", "ushort": "H", } def _ctype_to_struct(ctype): ctype = ctype.replace("const", "").strip() return _struct_dict[ctype] XrtArgument = collections.namedtuple("XrtArgument", ["name", "index", "type", "mem"]) def _create_call(regmap): from inspect import Parameter, Signature sorted_regmap = list(regmap.items()) sorted_regmap.sort(key=lambda x: x[1]["address_offset"]) parameters = [] ptr_list = [] struct_string = "=" arg_details = {} for k, v in sorted_regmap: curr_offset = struct.calcsize(struct_string) reg_offset = v["address_offset"] if reg_offset < curr_offset: raise RuntimeError("Struct string generation failed") elif reg_offset > curr_offset: struct_string += "{}x".format(reg_offset - curr_offset) reg_type = v["type"] if "*" in reg_type: struct_string += "Q" ptr_type = True else: struct_string += _struct_dict[v["type"]] ptr_type = False if k != "CTRL": ptr_list.append(ptr_type) parameters.append( Parameter(k, Parameter.POSITIONAL_OR_KEYWORD, annotation=v["type"]) ) arg_details[k] = XrtArgument( k, len(parameters), v["type"], v["memory"] if "memory" in v else None ) signature = Signature(parameters) return signature, struct_string, ptr_list, arg_details
[docs]class WaitHandle: def __init__(self, target): self.target = target
[docs] def wait(self): while self.target.mmio.read(0) & 0x4 != 0x4: pass
[docs]class DefaultIP(metaclass=RegisterIP): """Driver for an IP without a more specific driver This driver wraps an MMIO device and provides a base class for more specific drivers written later. It also provides access to GPIO outputs and interrupts inputs via attributes. More specific drivers should inherit from `DefaultIP` and include a `bindto` entry containing all of the IP that the driver should bind to. Subclasses meeting these requirements will automatically be registered. Attributes ---------- mmio : pynq.MMIO Underlying MMIO driver for the device _interrupts : dict Subset of the PL.interrupt_pins related to this IP _gpio : dict Subset of the PL.gpio_dict related to this IP """ def __init__(self, description): if "device" in description: self.device = description["device"] else: from .pl_server.device import Device self.device = Device.active_device self.mmio = MMIO( description["phys_addr"], description["addr_range"], device=self.device ) if "interrupts" in description: self._interrupts = description["interrupts"] else: self._interrupts = {} if "gpio" in description: self._gpio = description["gpio"] else: self._gpio = {} for interrupt, details in self._interrupts.items(): try: setattr(self, interrupt, Interrupt(details["fullpath"])) except ValueError as e: warnings.warn("Interrupt {} not created: {}".format(interrupt, str(e))) setattr(self, interrupt, None) for gpio, entry in self._gpio.items(): gpio_number = GPIO.get_gpio_pin(entry["index"]) setattr(self, gpio, GPIO(gpio_number, "out")) if "registers" in description: self._registers = description["registers"] self._fullpath = description["fullpath"] self._register_name = description["fullpath"].rpartition("/")[2] if "CTRL" in self._registers and self.device.has_capability("CALLABLE"): ( self._signature, struct_string, self._ptr_list, self.args, ) = _create_call(self._registers) self._call_struct = struct.Struct(struct_string) self._ctrl_reg = True self.start_ert = self._start_ert self.start_sw = self._start_sw self.call = self._call if self.device.has_capability("ERT"): self.start = self._start_ert else: self.start = self._start_sw else: self._registers = None if "index" in description: cu_index = self.device.open_context(description) self.cu_mask = 1 << cu_index self._setup_packet_prototype() if "streams" in description: self.streams = {} for k, v in description["streams"].items(): stream = self.device.get_memory_by_name(v["stream_id"]) self.streams[k] = stream if v["direction"] == "output": stream.source_ip = self elif v["direction"] == "input": stream.sink_ip = self def _setup_packet_prototype(self): self._packet = ert.ert_start_kernel_cmd() self._packet.m_uert.m_start_cmd_struct.state = ( ert.ert_cmd_state.ERT_CMD_STATE_NEW ) self._packet.m_uert.m_start_cmd_struct.unused = 0 self._packet.m_uert.m_start_cmd_struct.extra_cu_masks = 0 if hasattr(self, "_ctrl_reg"): self._packet.m_uert.m_start_cmd_struct.count = ( self._call_struct.size // 4 ) + 1 self._packet.m_uert.m_start_cmd_struct.opcode = ert.ert_cmd_opcode.ERT_START_CU self._packet.m_uert.m_start_cmd_struct.type = ert.ert_cmd_type.ERT_DEFAULT self._packet.cu_mask = self.cu_mask @property def register_map(self): if not hasattr(self, "_register_map"): if self._registers: self._register_map = RegisterMap.create_subclass( self._register_name, self._registers )(self.mmio.array) else: raise AttributeError( "register_map only available if the .hwh is provided" ) return self._register_map @property def signature(self): """The signature of the `call` method""" if hasattr(self, "_signature"): return self._signature else: return None def _call(self, *args, **kwargs): self.start(*args, **kwargs).wait() def _start_sw(self, *args, ap_ctrl=1, waitfor=None, **kwargs): """Start the accelerator This function will configure the accelerator with the provided arguments and start the accelerator. Use the `wait` function to determine when execution has finished. Note that buffers should be flushed prior to starting the accelerator and any result buffers will need to be invalidated afterwards. For details on the function's signature use the `signature` property. The type annotations provide the C types that the accelerator operates on. Any pointer types should be passed as `ContiguousArray` objects created from the `pynq.allocate` class. Scalars should be passed as a compatible python type as used by the `struct` library. """ if not self._signature: raise RuntimeError("Only HLS IP can be called with the wrapper") if waitfor is not None: raise RuntimeError("waitfor only supported on newer versions of XRT") if kwargs: # Resolve any kwargs to make a single args tuple args = self._signature.bind(*args, **kwargs).args # Resolve and pointers that need .device_address taken args = [ a.device_address if p else a for a, p in itertools.zip_longest(args, self._ptr_list) ] self.mmio.write(0, self._call_struct.pack(0, *args)) self.mmio.write(0, ap_ctrl) return WaitHandle(self) def _start_ert(self, *args, waitfor=(), **kwargs): """Start the accelerator using the ERT scheduler This function will use the embedded scheduler to call the accelerator with the provided arguments - see the documentation for ``start`` for more details. An optional ``waitfor`` parameter can be used to schedule dependent executions without using the CPU. Parameters ---------- waitfor : [WaitHandle] A list of wait handles returned by other calls to ``start_ert`` which must complete before this execution starts Returns ------- WaitHandle : Object with a ``wait`` call that will return when the execution completes """ if not self._signature: raise RuntimeError("Only HLS IP can be called with the wrapper") if kwargs: # Resolve any kwargs to make a single args tuple args = self._signature.bind(*args, **kwargs).args args = [a.device_address if p else a for a, p in zip(args, self._ptr_list)] arg_data = self._call_struct.pack(0, *args) bo = self.device.get_exec_bo() exec_packet = bo.as_packet(ert.ert_start_kernel_cmd) exec_packet.m_uert.header = self._packet.m_uert.header exec_packet.cu_mask = self.cu_mask ctypes.memmove(exec_packet.data, arg_data, len(arg_data)) wait_bos = tuple(w._bo for w in waitfor if w is not None and w._has_bo) if wait_bos: return self.device.execute_bo_with_waitlist(bo, wait_bos) else: return self.device.execute_bo(bo)
[docs] def read(self, offset=0): """Read from the MMIO device Parameters ---------- offset : int Address to read """ return self.mmio.read(offset)
[docs] def write(self, offset, value): """Write to the MMIO device Parameters ---------- offset : int Address to write to value : int or bytes Data to write """ self.mmio.write(offset, value)
class _IPMap: """Class that stores drivers to IP, hierarchies, interrupts and gpio as attributes. """ def __init__(self, desc): """Create a new _IPMap based on a hierarchical description.""" self._description = desc def __getattr__(self, key): if key in self._description["hierarchies"]: hierdescription = self._description["hierarchies"][key] hierarchy = hierdescription["driver"](hierdescription) setattr(self, key, hierarchy) return hierarchy elif key in self._description["ip"]: ipdescription = self._description["ip"][key] try: driver = ipdescription["driver"](ipdescription) except UnsupportedConfiguration as e: warnings.warn( "Configuration if IP {} not supported: {}".format(key, str(e.args)), UserWarning, ) print(f"Creating Driver for {key} from description {ipdescription}") driver = DefaultIP(ipdescription) setattr(self, key, driver) return driver elif key in self._description["interrupts"]: interrupt = Interrupt(self._description["interrupts"][key]["fullpath"]) setattr(self, key, interrupt) return interrupt elif key in self._description["gpio"]: gpio_index = self._description["gpio"][key]["index"] gpio_number = GPIO.get_gpio_pin(gpio_index) gpio = GPIO(gpio_number, "out") setattr(self, key, gpio) return gpio elif key in self._description["memories"]: mem = self._description["device"].get_memory( self._description["memories"][key] ) setattr(self, key, mem) return mem else: raise AttributeError( "Could not find IP or hierarchy {} in overlay".format(key) ) def _keys(self): """The set of keys that can be accessed through the IP map""" return ( list(self._description["hierarchies"].keys()) + list(i for i in self._description["ip"].keys()) + list(i for i in self._description["interrupts"].keys()) + list(i for i in self._description["gpio"].keys()) + list(g for g in self._description["memories"].keys()) ) def __dir__(self): return sorted( set(super().__dir__() + list(self.__dict__.keys()) + self._keys()) )
[docs]def DocumentOverlay(bitfile, download): """Function to build a custom overlay class with a custom docstring based on the supplied bitstream. Mimics a class constructor. """ class DocumentedOverlay(Overlay): def __init__(self): super().__init__(bitfile, download=download) overlay = DocumentedOverlay() DocumentedOverlay.__doc__ = _build_docstring( overlay._ip_map._description, bitfile, "overlay" ) return overlay
[docs]def DocumentHierarchy(description): """Helper function to build a custom hierarchy class with a docstring based on the description. Mimics a class constructor """ class DocumentedHierarchy(DefaultHierarchy): def __init__(self): super().__init__(description) hierarchy = DocumentedHierarchy() DocumentedHierarchy.__doc__ = _build_docstring( description, description["fullpath"], "hierarchy" ) return hierarchy
[docs]class RegisterHierarchy(type): """Metaclass to register classes as hierarchy drivers Any class with this metaclass an the `checkhierarchy` function will be registered in the global driver database """ def __init__(cls, name, bases, attrs): if "checkhierarchy" in attrs: _hierarchy_drivers.appendleft(cls) super().__init__(name, bases, attrs)
[docs] def unregister(cls): if cls in _hierarchy_drivers: _hierarchy_drivers.remove(cls)
[docs]class DefaultHierarchy(_IPMap, metaclass=RegisterHierarchy): """Hierarchy exposing all IP and hierarchies as attributes This Hierarchy is instantiated if no more specific hierarchy class registered with register_hierarchy_driver is specified. More specific drivers should inherit from `DefaultHierarachy` and call it's constructor in __init__ prior to any other initialisation. `checkhierarchy` should also be redefined to return True if the driver matches a hierarchy. Any derived class that meets these requirements will automatically be registered in the driver database. Attributes ---------- description : dict Dictionary storing relevant information about the hierarchy. parsers : dict Parser objects for partial block design metadata. bitstreams : dict Bitstream objects for partial designs. pr_loaded : str The absolute path of the partial bitstream loaded. """ def __init__(self, description): self.description = description self.parsers = dict() self.bitstreams = dict() self.pr_loaded = "" self.device = description["device"] self._overlay = description["overlay"] super().__init__(description)
[docs] @staticmethod def checkhierarchy(description): """Function to check if the driver matches a particular hierarchy This function should be redefined in derived classes to return True if the description matches what is expected by the driver. The default implementation always returns False so that drivers that forget don't get loaded for hierarchies they don't expect. """ return False
[docs] def download(self, bitfile_name, dtbo=None, program=True): """Function to download a partial bitstream for the hierarchy block. Since it is hard to know which hierarchy is to be reconfigured by only looking at the metadata, we assume users will tell this information. Thus, this function should be called only when users are sure about the hierarchy name of the partial region. Parameters ---------- bitfile_name : str The name of the partial bitstream. dtbo : str The relative or absolute path of the partial dtbo file. program : bool Whether the overlay should be downloaded. """ if self.pr_loaded: self._find_bitstream_by_abs(self.pr_loaded).remove_dtbo() self._locate_metadata(bitfile_name, dtbo) self._parse(bitfile_name) self._load_bitstream(bitfile_name, program) if dtbo: self.bitstreams[bitfile_name].insert_dtbo() self.device.update_partial_region( self.description["fullpath"], self.parsers[self.pr_loaded] ) self._overlay._deepcopy_dict_from(self.device) self._overlay.pr_dict[self.description["fullpath"]] = { "loaded": self.pr_loaded, "dtbo": dtbo, } description = _complete_description( self._overlay.ip_dict, self._overlay.hierarchy_dict, self._overlay.ignore_version, self._overlay.mem_dict, self._overlay.device, self._overlay, ) self._overlay._ip_map = _IPMap(description)
def _find_bitstream_by_abs(self, absolute_path): for i in self.bitstreams.keys(): if self.bitstreams[i].bitfile_name == absolute_path: return self.bitstreams[i] return None def _locate_metadata(self, bitfile_name, dtbo): self.bitstreams[bitfile_name] = Bitstream(bitfile_name, dtbo, partial=True) bitfile_name = self.bitstreams[bitfile_name].bitfile_name self.parsers[bitfile_name] = self.device.get_bitfile_metadata(bitfile_name, partial=True) def _parse(self, bitfile_name): bitfile_name = self.bitstreams[bitfile_name].bitfile_name fullpath = self.description["fullpath"] ip_dict = dict() for k, v in self.parsers[bitfile_name].ip_dict.items(): ip_dict_id = fullpath + "/" + v["fullpath"] ip_dict[ip_dict_id] = v ip_dict[ip_dict_id]["fullpath"] = fullpath + "/" + v["fullpath"] self.parsers[bitfile_name].ip_dict = ip_dict self.parsers[bitfile_name].nets = { fullpath + "_" + s: {fullpath + "/" + i for i in p} for s, p in self.parsers[bitfile_name].nets.items() if s is not None and p is not None } self.parsers[bitfile_name].pins = { fullpath + "/" + p: fullpath + "_" + s for p, s in self.parsers[bitfile_name].pins.items() if s is not None and p is not None } def _load_bitstream(self, bitfile_name, program): if program: self.bitstreams[bitfile_name].download() self.pr_loaded = self.bitstreams[bitfile_name].bitfile_name